Reduction in Airfoil Trailing-Edge Noise Using a Pulsed Laser as an Actuator

被引:1
|
作者
Ogura, Keita [1 ]
Kojima, Yoimi [2 ]
Imai, Masato [1 ]
Konishi, Kohei [1 ]
Nakakita, Kazuyuki [2 ]
Kameda, Masaharu [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Mech Syst Engn, Koganei 1848588, Japan
[2] Japan Aerosp Explorat Agcy, Aviat Technol Directorate, Chofu 1828522, Japan
关键词
trailing-edge noise; aeroacoustics; flow control; laser-based energy deposition; TONAL-NOISE; ENERGY; SCHEMES; FLOWS;
D O I
10.3390/act12010045
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Trailing-edge noise (TE noise) is an aeroacoustic sound radiated from an isolated airfoil in the specific ranges of low-speed flow. We used a pulsed laser as an actuator to reduce the TE noise without modifying the airfoil's surface. The wind tunnel test was conducted to verify the capability of an Nd:YAG laser as the actuator. The laser beam was focused into the air just outside the velocity boundary layer on the lower side of an NACA0012 airfoil. The experimental result shows that the TE noise is suppressed for a certain period after beam irradiations. We then analyzed the physical mechanism of the noise reduction with the laser actuation by the implicit large eddy simulation (ILES), a high-fidelity numerical method for computational fluid dynamics (CFD). The numerical investigations indicate that the pulsed energy deposition changes the unstable velocity amplification mode of the boundary layer, the source of an acoustic feedback loop radiating the TE noise, to another mode that does not generate the TE noise. The sound wave attenuation is observed once the induced velocity fluctuations and consequently generated vortices sweep out the flow structure of the unstable mode. We also examined the effect of the laser irradiation zone's shape by numerical simulations. The results show that the larger irradiation zone, which introduces the disturbances over a wider range in the span direction, is more effective in reducing the TE noise than the shorter focusing length with the same energies.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Prediction of Airfoil Trailing-Edge Noise Using Empirical Wall-Pressure Spectrum Models
    Lee, Seongkyu
    Shum, Jessica G.
    AIAA JOURNAL, 2019, 57 (03) : 888 - 897
  • [32] Prediction of airfoil trailing-edge noise using empirical wall-pressure spectrum models
    Lee, Seongkyu
    Shum, Jessica G.
    AIAA Journal, 2019, 57 (03): : 888 - 897
  • [33] FLOW NEAR THE TRAILING-EDGE OF AN AIRFOIL - COMMENT
    DUMITRESCU, LZ
    AIAA JOURNAL, 1993, 31 (08) : 1538 - 1539
  • [34] Numerical analysis of airfoil trailing-edge noise for straight and serrated edges at incidence
    Romani, Gianluca
    Casalino, Damiano
    van der Velden, Wouter
    AIAA Journal, 2021, 59 (07): : 2558 - 2577
  • [35] Self-Noise Produced by an Airfoil with Nonflat Plate Trailing-Edge Serrations
    Chong, Tze Pei
    Vathylakis, Alexandros
    Joseph, Phillip F.
    Gruber, Mathieu
    AIAA JOURNAL, 2013, 51 (11) : 2665 - 2677
  • [36] Numerical Analysis of Airfoil Trailing-Edge Noise for Straight and Serrated Edges at Incidence
    Romani, Gianluca
    Casalino, Damiano
    van der Velden, Wouter
    AIAA JOURNAL, 2021, 59 (07) : 2558 - 2577
  • [37] Active control of airfoil turbulent boundary layer noise with trailing-edge blowing
    Yang, Chenghao
    Arcondoulis, Elias J. G.
    Yang, Yannian
    Guo, Jing
    Maryami, Reza
    Bi, Chuanxing
    Liu, Yu
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (04): : 2115 - 2130
  • [38] Reduction of Wind Turbine Noise Using Optimized Airfoils and Trailing-Edge Serrations
    Oerlemans, Stefan
    Fisher, Murray
    Maeder, Thierry
    Koegler, Klaus
    AIAA JOURNAL, 2009, 47 (06) : 1470 - 1481
  • [39] Experimental investigation of porous materials for trailing-edge noise reduction
    Rossignol, K-S
    Suryadi, A.
    Herr, M.
    Schmidt, J.
    Tychsen, J.
    INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2020, 19 (6-8) : 365 - 384
  • [40] Benefits of curved serrations on broadband trailing-edge noise reduction
    Avallone, F.
    van der Velden, W. C. P.
    Ragni, D.
    JOURNAL OF SOUND AND VIBRATION, 2017, 400 : 167 - 177