Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery

被引:27
|
作者
Sanchez, Alejandro J. Da Silva [1 ,2 ]
Zhao, Kun [3 ,6 ]
Huayamares, Sebastian G. [3 ]
Hatit, Marine Z. C. [3 ]
Lokugamage, Melissa P. [3 ,7 ]
Loughrey, David [3 ]
Dobrowolski, Curtis [3 ]
Wang, Shuaishuai [4 ]
Kim, Hyejin [3 ]
Paunovska, Kalina [3 ]
Kuzminich, Yanina [1 ,5 ]
Dahlman, James E. [3 ]
机构
[1] Georgia Inst Technol, Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Chem Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[4] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA
[5] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[6] Shandong Univ, Sch Pharmaceut Sci, Key Lab Chem Biol, Minist Educ, Jinan 250012, Peoples R China
[7] Alloy Therapeut, Lexington, MA USA
关键词
mRNA; Lipid nanoparticles; Stereochemistry; IN-VIVO; NANOPARTICLES; NANOCARRIERS;
D O I
10.1016/j.jconrel.2022.11.037
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid nanoparticles (LNPs) have delivered siRNA and mRNA drugs in humans, underscoring the potential impact of improving the therapeutic window of next-generation LNPs. To increase the LNP therapeutic window, we applied lessons from small-molecule chemistry to ionizable lipid design. Specifically, given that stereochemistry often influences small-molecule safety and pharmacokinetics, we hypothesized that the stereochemistry of lipids within an LNP would influence mRNA delivery. We tested this hypothesis in vivo using 128 novel LNPs that included stereopure derivatives of C12-200, an ionizable lipid that when formulated into LNPs delivers RNA in mice and non-human primates but is not used clinically due to its poor tolerability. We found that a novel C12200-S LNP delivered up to 2.8-fold and 6.1-fold more mRNA in vivo than its racemic and C12-200-R controls, respectively. To identify the potential causes leading to increased delivery, we quantified LNP biophysical traits and concluded that these did not change with stereochemistry. Instead, we found that stereopure LNPs were better tolerated than racemic LNPs in vivo. These data suggest that LNP-mediated mRNA delivery can be improved by designing LNPs to include stereopure ionizable lipids.
引用
收藏
页码:270 / 277
页数:8
相关论文
共 50 条
  • [41] Ionizable lipid nanoparticles for in utero mRNA delivery
    Riley, Rachel S.
    Kashyap, Meghana, V
    Billingsley, Margaret M.
    White, Brandon
    Alameh, Mohamad-Gabriel
    Bose, Sourav K.
    Zoltick, Philip W.
    Li, Hiaying
    Zhang, Rui
    Cheng, Andrew Y.
    Weissman, Drew
    Peranteau, William H.
    Mitchell, Michael J.
    SCIENCE ADVANCES, 2021, 7 (03)
  • [42] Silicon Ether Ionizable Lipids Enable Potent mRNA Lipid Nanoparticles with Rapid Tissue Clearance
    Holland, Richard
    Lam, Kieu
    Jeng, Sunny
    Mcclintock, Kevin
    Palmer, Lorne
    Schreiner, Petra
    Wood, Mark
    Zhao, Wenchen
    Heyes, James
    ACS NANO, 2024, : 10374 - 10387
  • [43] Lung-Specific mRNA Delivery by Ionizable Lipids with Defined Structure-Function Relationship and Unique Protein Corona Feature
    He, Xiaoyan
    Wang, Runyuan
    Cao, Yan
    Ding, Yan
    Chang, Yan
    Dong, Haoru
    Xie, Rong
    Zhong, Guisheng
    Yang, Huiying
    Li, Jianfeng
    ADVANCED SCIENCE, 2025,
  • [44] In silico insights into the membrane disruption induced by the protonation of ionizable lipids
    Zhao, Zhen
    Zhang, Hao
    Zhuang, Xiaoyan
    Yan, Lijuan
    Li, Guangyong
    Li, Jun
    Yan, Hui
    JOURNAL OF MOLECULAR MODELING, 2025, 31 (03)
  • [45] Claisen Self-Condensation of Lactones in the Synthesis of Ionizable Lipids
    Nabi, Ardalan
    Atmuri, N. D. Prasad
    Arnold, Deaglan
    Saadati, Fariba
    Tran, Huy
    Adak, Taniya
    Dake, Gregory R.
    Ciufolini, Marco A.
    JOURNAL OF ORGANIC CHEMISTRY, 2024, 89 (17): : 12775 - 12778
  • [46] Calculating Apparent pK a Values of Ionizable Lipids in Lipid Nanoparticles
    Hamilton, Nicholas B.
    Arns, Steve
    Shelley, Mee
    Bechis, Irene
    Shelley, John C.
    MOLECULAR PHARMACEUTICS, 2024, 22 (01) : 588 - 593
  • [47] Comparison of ionizable lipids for lipid nanoparticle mediated DNA delivery (vol 203, 106898, 2024)
    Lotter, Claudia
    Kuzucu, Evrim Umit
    Casper, Jens
    Alter, Claudio Luca
    Puligilla, Ramya Deepthi
    Detampel, Pascal
    Lopez, Juana Serrano
    Ham, Alexander Sebastian
    Huwyler, Jorg
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2025, 204
  • [48] Synthetic molecule libraries for nucleic acid delivery: Design parameters in cationic/ionizable lipids and polymers
    Kim, Hyun Jin
    Kim, Ahram
    Miyata, Kanjiro
    DRUG METABOLISM AND PHARMACOKINETICS, 2022, 42
  • [49] CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids
    Park, Soohyung
    Choi, Yeol Kyo
    Kim, Seonghoon
    Lee, Jumin
    Im, Wonpil
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (10) : 5192 - 5202
  • [50] Overcoming thermostability challenges in mRNA-lipid nanoparticle systems with piperidine-based ionizable lipids
    Hashiba, Kazuki
    Taguchi, Masamitsu
    Sakamoto, Sachiko
    Otsu, Ayaka
    Maeda, Yoshiki
    Ebe, Hirofumi
    Okazaki, Arimichi
    Harashima, Hideyoshi
    Sato, Yusuke
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)