Mean curvature flow;
Generalized Robertson-Walker spacetimes;
Constant mean curvature hypersurfaces;
SPACELIKE HYPERSURFACES;
UNIQUENESS;
D O I:
10.1007/s10231-022-01266-y
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove the longtime existence for the mean curvature flow problem with a perpendicular Neumann boundary condition in a generalized Robertson-Walker (GRW) spacetime that obeys the null convergence condition. In addition, we prove that the metric of such a solution is conformal to the one of the leaf of the GRW in asymptotic time. Furthermore, if the initial hypersurface is mean convex, then the evolving hypersurfaces remain mean convex during the flow.
机构:
Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
Kyungpook Natl Univ, RIRCM, Daegu 41566, South KoreaUniv Calcutta, Dept Pure Math, 35,Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
Suh, Young Jin
Chaubey, Sudhakar K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol & Appl Sci, Dept Informat Technol, Sect Math, POB 77, Shinas 324, OmanUniv Calcutta, Dept Pure Math, 35,Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
机构:
Univ Burdwan, Dept Math, Kabi Sukanta Mahavidyalaya, Hooghly, W Bengal, IndiaUniv Burdwan, Dept Math, Kabi Sukanta Mahavidyalaya, Hooghly, W Bengal, India
De, Krishnendu
Khan, Mohammad Nazrul Islam
论文数: 0引用数: 0
h-index: 0
机构:
Qassim Univ, Coll Comp, Dept Comp Engn, Buraydah, Saudi ArabiaUniv Burdwan, Dept Math, Kabi Sukanta Mahavidyalaya, Hooghly, W Bengal, India