Spanning simple path inside a simple polygon

被引:0
|
作者
Sepahvand, Abdolah [1 ]
Razzazi, Mohammadreza [1 ]
机构
[1] Amirkabir Univ Technol, Dept Comp Engn, Tehran 100190, Iran
来源
JOURNAL OF SUPERCOMPUTING | 2023年 / 79卷 / 03期
关键词
Hamiltonian path; NP-complete; Orthogonal spiral polygon; Simple Path; COMPUTING SIMPLE PATHS; ALGORITHM;
D O I
10.1007/s11227-022-04765-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set S of n colored points of m colors inside a simple polygon P, each point within the polygon has a specific color that is not necessarily unique, i.e., they may exhibit the same color. The study aims to find a simple path that traverses at least one point of each color using a set of S points contained within a simple polygon P. Two results are presented in this study. First, we demonstrate that finding such simple paths inside a simple polygon is an NP - complete problem. Moreover, we provide a polynomial-time algorithm that computes the simple path when P is an orthogonal spiral simple polygon, and our objective is to locate a simple Hamiltonian path L using all points of S inside P. Our algorithm has a time complexity of 0(r + rn(4)), where r is the number of reflex vertices in P and n is the number of points in S.
引用
收藏
页码:2740 / 2766
页数:27
相关论文
共 50 条
  • [31] Decomposing a simple polygon into trapezoids
    Li, Fajie
    Klette, Reinhard
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2007, 4673 : 726 - 733
  • [32] An optimal data structure for shortest rectilinear path queries in a simple rectilinear polygon
    Schuierer, S
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1996, 6 (02) : 205 - 225
  • [33] Shortest path queries in a simple polygon for 3D virtual museum
    Yang, Chenglei
    Qi, Meng
    Wang, Jiaye
    Wang, Xiaoting
    Meng, Xiangxu
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2007, PT 1, PROCEEDINGS, 2007, 4705 : 110 - +
  • [34] Polygon Laplacian Made Simple
    Bunge, Astrid
    Herholz, Philipp
    Kazhdan, Misha
    Botsch, Mario
    COMPUTER GRAPHICS FORUM, 2020, 39 (02) : 303 - 313
  • [35] COMPLIANT MOTION IN A SIMPLE POLYGON
    FRIEDMAN, J
    HERSHBERGER, J
    SNOEYINK, J
    PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, 1989, : 175 - 186
  • [36] MANHATTONIAN PROXIMITY IN A SIMPLE POLYGON
    KLEIN, R
    LINGAS, A
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) : 53 - 74
  • [37] Stabbing information of a simple polygon
    Everett, H
    Hurtado, F
    Noy, M
    DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 67 - 82
  • [38] TESTING A SIMPLE POLYGON FOR MONOTONICITY
    PREPARATA, FP
    SUPOWIT, KJ
    INFORMATION PROCESSING LETTERS, 1981, 12 (04) : 161 - 164
  • [39] A simple directional path loss model for a terminal inside a car
    Harrysson, F
    2003 IEEE 58TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS1-5, PROCEEDINGS, 2003, : 119 - 122
  • [40] A Time-Space Trade-off for the Shortest Path Tree in a Simple Polygon
    Kavand, Pardis
    Mohades, Ali
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (03) : 391 - 402