A characterization of homogeneous totally real minimal two-spheres in a complex hyperquadric

被引:0
|
作者
Fei, Jie [1 ]
Wang, Jun [2 ,3 ]
Xu, Xiaowei [4 ,5 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Math & Phys, Suzhou 215123, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[5] Chinese Acad Sci, Wu Wen Tsun Key Lab Math, USTC, Hefei 230026, Anhui, Peoples R China
关键词
Constant curvature; homogeneity; hyperquadric; minimal two-spheres; totally real; GRASSMANN MANIFOLD G(2; CONSTANT CURVATURE; HOLOMORPHIC-CURVES; HARMONIC MAPS; EXPLICIT CONSTRUCTION; CLASSIFICATION; RIGIDITY; SURFACES; IMMERSIONS; SPHERES;
D O I
10.1142/S0129167X23501008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a characterization of homogeneous totally real minimal two-spheres in a complex hyperquadric Q(n). Let f be a totally real minimal immersion from two-sphere in Q(n), and tau XY, tau Xc (see Sec. 2) are globally defined invariants relative to the first and second fundamental forms. We prove that if its Gauss curvature K and tau XY are constants, and tau Xc vanishes identically, then f is congruent to F-2k,F-2l constructed by the Boruvka spheres with n = 2(k + l).
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Classfication of Homogeneous Two-Spheres in G(2, 5;C)
    Wenjuan Zhang
    Jie Fei
    Xiaoxiang Jiao
    Acta Mathematica Scientia, 2019, 39 : 312 - 328
  • [32] Explicit construction of harmonic two-spheres into the complex Grassmannian
    Ferreira, Maria Joao
    Simoes, Bruno Ascenso
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) : 151 - 174
  • [33] THE INTERSECTION OF TWO REAL FORMS IN THE COMPLEX HYPERQUADRIC
    Tasaki, Hiroyuki
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (03) : 375 - 382
  • [34] CLASSFICATION OF HOMOGENEOUS TWO-SPHERES IN G(2, 5;C)
    张文娟
    费杰
    焦晓祥
    Acta Mathematica Scientia, 2019, (01) : 312 - 328
  • [35] CLASSFICATION OF HOMOGENEOUS TWO-SPHERES IN G(2, 5; C)
    Zhang, Wenjuan
    Fei, Jie
    Jiao, Xiaoxiang
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (01) : 312 - 328
  • [36] Minimal two-spheres with constant curvature in the quaternionic projective space
    Jie Fei
    Chiakuei Peng
    Xiaowei Xu
    ScienceChina(Mathematics), 2020, 63 (05) : 993 - 1006
  • [37] On totally real spheres in complex space
    Gong, XH
    MATHEMATISCHE ANNALEN, 1997, 309 (04) : 611 - 623
  • [38] On totally real spheres in complex space
    Xianghong Gong
    Mathematische Annalen, 1997, 309 : 611 - 623
  • [39] Minimal two-spheres of constant curvature in a quaternion projective space
    Jiao, Xiaoxiang
    Xu, Yan
    Xin, Jialin
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1139 - 1155
  • [40] Minimal two-spheres with constant curvature in the quaternionic projective space
    Jie Fei
    Chiakuei Peng
    Xiaowei Xu
    Science China Mathematics, 2020, 63 : 993 - 1006