A Hybrid Deep Learning Method Based on CEEMDAN and Attention Mechanism for Network Traffic Prediction

被引:3
|
作者
Wang, Dong [1 ]
Bao, Yu-Yang [1 ]
Wang, Chuan-Mei [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
关键词
Telecommunication traffic; Feature extraction; Base stations; Deep learning; Data mining; Correlation; Market research; Network traffic prediction; deep learning; complete ensemble empirical mode decomposition with adaptive noise; temporal convolutional network; gated recurrent unit; attention mechanism; EMPIRICAL MODE DECOMPOSITION; SERIES;
D O I
10.1109/ACCESS.2023.3268437
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of network traffic trends is important for self-management, intelligent scheduling and network resource optimization of base stations. Network traffic prediction is a prerequisite for intelligent scheduling of base stations, and accurate prediction will be beneficial for improving network utilization and energy saving in scheduling. In this paper, a hybrid deep learning method for network traffic prediction, CEEMDAN-TGA which consists of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Temporal Convolutional Network (TCN), Gated Recurrent Unit (GRU), and Attention Mechanism is proposed. Firstly, CEEMDAN is introduced to decompose the original network traffic data into different modes, then reconstruct the modes into trend sequence and noise sequence. Secondly, TCN is used to extract the short-term local features in the network traffic, GRU is used to obtain the long-term data-dependent features, and the attention mechanism is used to improve the prediction accuracy and stability. Finally, through the comparison of experiments, the prediction effect and accuracy of the proposed method are verified to have significant advantages, and the network traffic scheduling strategy is proposed on the basis of prediction.
引用
下载
收藏
页码:39651 / 39663
页数:13
相关论文
共 50 条
  • [11] Traffic flow prediction method based on deep learning
    Jiang, Luofeng
    Journal of Physics: Conference Series, 2020, 1646 (01)
  • [12] Traffic prediction for 5G: A deep learning approach based on lightweight hybrid attention networks
    Su, Jian
    Cai, Huimin
    Sheng, Zhengguo
    Liu, A. X.
    Baz, Abdullah
    DIGITAL SIGNAL PROCESSING, 2024, 146
  • [13] Deep Learning-Based Traffic Prediction for Network Optimization
    Troia, Sebastian
    Alvizu, Rodolfo
    Zhou, Youduo
    Maier, Guido
    Pattavina, Achille
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [14] DCAMCP: A deep learning model based on capsule network and attention mechanism for molecular carcinogenicity prediction
    Chen, Zhe
    Zhang, Li
    Sun, Jianqiang
    Meng, Rui
    Yin, Shuaidong
    Zhao, Qi
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (20) : 3117 - 3126
  • [15] Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method
    Karijadi, Irene
    Chou, Shuo-Yan
    Dewabharata, Anindhita
    RENEWABLE ENERGY, 2023, 218
  • [16] Uncertainty-Aware Traffic Prediction using Attention-based Deep Hybrid Network with Bayesian Inference
    Rahman, Moshiur
    Jamil, Abu Rafe Md
    Nower, Naushin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1243 - 1251
  • [17] A Deep Learning Framework with Spatial-Temporal Attention Mechanism for Cellular Traffic Prediction
    Gao, Yun
    Wei, Xin
    Zhou, Liang
    Lv, Haibing
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [18] A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
    Chen, Yuanhang
    Peng, Gaoliang
    Zhu, Zhiyu
    Li, Sijue
    APPLIED SOFT COMPUTING, 2020, 86
  • [19] A Network Traffic Prediction Method for AIOps Based on TDA and Attention GRU
    Wang, Kun
    Tan, Yuan
    Zhang, Lizhong
    Chen, Zhigang
    Lei, Jinghong
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [20] Research on Website Traffic Prediction Method Based on Deep Learning
    Bao, Rong
    Zhang, Kailiang
    Huang, Jing
    Li, Yuxin
    Liu, Weiwei
    Wang, Likai
    SIMULATION TOOLS AND TECHNIQUES, SIMUTOOLS 2021, 2022, 424 : 432 - 440