SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES

被引:2
|
作者
Iosevich, Alex [1 ]
Magyar, Akos [2 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Univ Georgia, Dept Math, Athens, GA USA
来源
ANALYSIS & PDE | 2023年 / 16卷 / 07期
基金
美国国家科学基金会;
关键词
simplexes; Hausdorff dimension; graphs; SETS; DENSITY;
D O I
10.2140/apde.2023.16.1485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a nondegenerate simplex on k vertices. We prove that there exists a threshold s(k) < k such that any set A subset of R(k )of Hausdorff dimension dim A > s(k )necessarily contains a similar copy of the simplex Delta.
引用
收藏
页码:1485 / 1496
页数:13
相关论文
共 50 条
  • [31] Some inequalities for two simplices in the Euclidean space En
    Pan, Juanjuan
    Zuo, Xuewu
    [J]. HELIYON, 2023, 9 (11)
  • [32] Simplices and Regular Polygonal Tori in Euclidean Ramsey Theory
    Karamanlis, Miltiadis
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03): : 1 - 8
  • [33] Weighted projective spaces and reflexive simplices
    Conrads, H
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 107 (02) : 215 - 227
  • [34] THE UNIFORM SUBSETS OF THE EUCLIDEAN PLANE
    Beriashvili, Mariam
    [J]. TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 391 - 393
  • [35] Weighted projective spaces and reflexive simplices
    Heinke Conrads
    [J]. manuscripta mathematica, 2002, 107 : 215 - 227
  • [36] SUBSETS OF EUCLIDEAN-SPACE
    CHARBONNEL, JY
    [J]. ANNALES DE L INSTITUT FOURIER, 1991, 41 (03) : 679 - 717
  • [37] REGULAR SIMPLICES IN SPACES OF CONSTANT CURVATURE
    MARTINI, H
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (02): : 169 - 171
  • [38] Optimal simplices and codes in projective spaces
    Cohn, Henry
    Kumar, Abhinav
    Minton, Gregory
    [J]. GEOMETRY & TOPOLOGY, 2016, 20 (03) : 1289 - 1357
  • [39] On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces
    Ren, Wei
    Miche, Yoan
    Oliver, Ian
    Holtmanns, Silke
    Bjork, Kaj-Mikael
    Lendasse, Amaury
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 3 - 13
  • [40] Computability on subsets of Euclidean space I: closed and compact subsets
    Brattka, V
    Weihrauch, K
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 219 (1-2) : 65 - 93