A combined multilevel factor analysis and covariance regression model with mixed effects in the mean and variance structure

被引:0
|
作者
Orindi, Benedict [1 ,2 ,6 ]
Quintero, Adrian [3 ]
Bruyneel, Luk [4 ]
Li, Baoyue [5 ]
Lesaffre, Emmanuel [1 ]
机构
[1] Katholieke Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr, Leuven, Belgium
[2] KEMRI Wellcome Trust Res Programme, Dept Stat, CGRMC, Kilifi, Kenya
[3] Icfes Colombian Inst Educ Evaluat, Evaluat Dept, Bogota, Colombia
[4] Katholieke Univ Leuven, Leuven Inst Healthcare Policy, Leuven, Belgium
[5] IMPACT Therapeut, Biometr Div, Shanghai, Peoples R China
[6] Katholieke Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr, Kapucijnenvoer 35, B-3000 Leuven, Belgium
关键词
Bayesian inference; combined model; covariance regression; factor analysis; heteroscedasticity; multivariate multilevel data; PATIENT SATISFACTION; STRATEGIES;
D O I
10.1002/sim.9768
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Li et al developed a multilevel covariance regression (MCR) model as an extension of the covariance regression model of Hoff and Niu. This model assumes a hierarchical structure for the mean and the covariance matrix. Here, we propose the combined multilevel factor analysis and covariance regression model in a Bayesian framework, simultaneously modeling the MCR model and a multilevel factor analysis (MFA) model. The proposed model replaces the responses in the MCR part with the factor scores coming from an MFA model. Via a simulation study and the analysis of real data, we show that the proposed model is quite efficient when the responses of the MCR model are not measured directly but are latent variables such as the patient experience measurements in our motivating dataset.
引用
收藏
页码:3128 / 3144
页数:17
相关论文
共 50 条
  • [41] Use of multilevel covariance structure analysis to evaluate the multilevel nature of theoretical constructs
    Farmer, GL
    [J]. SOCIAL WORK RESEARCH, 2000, 24 (03) : 180 - 191
  • [42] Stability analysis of optimal mean-variance portfolio due to covariance estimation
    Sediva, Blanka
    Marek, Patrice
    [J]. MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 759 - 764
  • [43] Factor Analysis and Regression Prediction Model of Swimmers' Performance Structure Based on Mixed Genetic Neural Network
    Yuan, Rui
    Han, Yuexing
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [44] Mean and covariance structure analysis: Theoretical and practical improvements
    Yuan, KH
    Bentler, PM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 767 - 774
  • [45] A beta-inflated mean regression model with mixed effects for fractional response variables
    Fernandez, Renzo
    Bayes, Cristian L.
    Valdivieso, Luis
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (10) : 1936 - 1957
  • [46] SIMULTANEOUS ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS FROM MULTITRAIT MIXED MODEL EQUATIONS
    SCHAEFFER, LR
    WILTON, JW
    THOMPSON, R
    [J]. BIOMETRICS, 1978, 34 (02) : 199 - 208
  • [47] Robust mean and covariance matrix estimation under heterogeneous mixed-effects model with missing values
    Ferrer, A. Hippert
    El Korso, M. N.
    Breloy, A.
    Ginolhac, G.
    [J]. SIGNAL PROCESSING, 2021, 188
  • [48] Mixture regression for longitudinal data based on joint mean-covariance model
    Yu, Jing
    Nummi, Tapio
    Pan, Jianxin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [49] Robust estimation in joint mean-covariance regression model for longitudinal data
    Zheng, Xueying
    Fung, Wing Kam
    Zhu, Zhongyi
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (04) : 617 - 638
  • [50] A Multivariate Variance Components Model for Analysis of Covariance in Designed Experiments
    Booth, James G.
    Federer, Walter T.
    Wells, Martin T.
    Wolfinger, Russell D.
    [J]. STATISTICAL SCIENCE, 2009, 24 (02) : 223 - 237