Vector balancing in Lebesgue spaces

被引:5
|
作者
Reis, Victor [1 ]
Rothvoss, Thomas [1 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Beck-Fiala conjecture; discrepancy theory; Komlos conjecture; vector balancing; GEOMETRY;
D O I
10.1002/rsa.21113
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Komlos conjecture suggests that for any vectors a1, horizontal ellipsis ,an is an element of B2m$$ {\boldsymbol{a}}_1,\dots, {\boldsymbol{a}}_n\in {B}_2<^>m $$ there exist x1, horizontal ellipsis ,xn is an element of{-1,1}$$ {x}_1,\dots, {x}_n\in \left\{-1,1\right\} $$ so that || n-ary sumation i=1nxiai||infinity <= O(1)$$ {\left\Vert {\sum}_{i=1}<^>n{x}_i{\boldsymbol{a}}_i\right\Vert}_{\infty}\le O(1) $$. It is a natural extension to ask what lq$$ {\ell}_q $$-norm bound to expect for a1, horizontal ellipsis ,an is an element of Bpm$$ {\boldsymbol{a}}_1,\dots, {\boldsymbol{a}}_n\in {B}_p<^>m $$. We prove a tight partial coloring result for such vectors, implying a nearly tight full coloring bound. As a corollary, this implies a special case of Beck-Fiala's conjecture. We achieve this by showing that, for any delta>0$$ \delta >0 $$, a symmetric convex body K subset of Double-struck capital Rn$$ K\subseteq {\mathbb{R}}<^>n $$ with Gaussian measure at least e-delta n$$ {e}<^>{-\delta n} $$ admits a partial coloring. Previously this was known only for a small enough delta$$ \delta $$. Additionally, we show that a hereditary volume bound suffices to provide such Gaussian measure lower bounds.
引用
收藏
页码:667 / 688
页数:22
相关论文
共 50 条
  • [21] The Lebesgue constants on projective spaces
    Kushpel, Alexander
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (02) : 856 - 863
  • [22] ON THE COMPLEXITY OF CLASSIFYING LEBESGUE SPACES
    Brown, Tyler A.
    Mcnicholl, Timothy H.
    Melnikov, Alexander G.
    JOURNAL OF SYMBOLIC LOGIC, 2020, 85 (03) : 1254 - 1288
  • [23] On small Lebesgue spaces and their applications
    Fiorenza, A
    Rakotoson, JM
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (01) : 23 - 26
  • [24] POLYMORPHISMS AND PARTITIONS OF LEBESGUE SPACES
    FEDOROV, AL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1982, 16 (02) : 150 - 152
  • [25] Domination in weighted Lebesgue spaces
    Li, Ying
    Wang, Chunjie
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (06) : 760 - 766
  • [26] CONVERGENCE IN VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Fiorenza, Alberto
    PUBLICACIONS MATEMATIQUES, 2010, 54 (02) : 441 - 459
  • [27] COMPACTNESS IN CERTAIN LEBESGUE SPACES
    FULLERTON, RE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (03) : 234 - 235
  • [28] Weyl quantization of Lebesgue spaces
    Boggiatto, Paolo
    De Donno, Giuseppe
    Oliaro, Alessandro
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) : 1656 - 1663
  • [29] Grand Lebesgue sequence spaces
    Rafeiro, Humberto
    Samko, Stefan
    Umarkhadzhiev, Salaudin
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (02) : 291 - 302
  • [30] Grand quasi Lebesgue spaces
    Formica, Maria Rosaria
    Ostrovsky, Eugeny
    Sirota, Leonid
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (01)