Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning

被引:1
|
作者
Teng, Xiaoyuan [1 ,2 ]
Pang, Jianchao [1 ]
Liu, Feng [2 ,3 ]
Zou, Chenglu [1 ]
Li, Shouxin [1 ]
Zhang, Zhefeng [1 ]
机构
[1] Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
[2] Liaoning Petrochem Univ, Sch Mech Engn, 1 Dandong Rd, Fushun 113001, Peoples R China
[3] Jihua Lab, Foshan 528200, Peoples R China
基金
中国国家自然科学基金;
关键词
gray cast irons; machine learning; microstructures; ultimate tensile strength; MECHANICAL-PROPERTIES; FATIGUE-STRENGTH; ALLOYS; SOLIDIFICATION; FRACTURE; MODEL;
D O I
10.1002/srin.202300205
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The ultimate tensile strength (UTS) of gray cast iron (GCI) can be affected by numerous parameters due to its complex microstructures. To further understand the UTS of GCI, it is necessary to evaluate the impact of various parameters. Herein, a UTS prediction method based on microstructure features and machine learning (ML) algorithms is proposed. The six regression algorithms, namely, Bayesian Ridge, Linear Regression, Elastic Net Regression, Support Vector Regression, Gradient Boosting Regressor (GBR), and Random Forest Regressor are used to develop the prediction models. The predicted results show that the GBR has the best prediction performance for the predicted UTS and the error bands within 5%. The feature importance indicates that matrix hardness has the greatest effect on the UTS in the ML models. Several machine learning algorithms are used to evaluate the tensile strength of metals based on microstructure characteristics. These models can accurately predict the tensile properties of gray cast iron and rank the importance of the microstructural features referenced in the models, which can guide the application of machine learning algorithms in tensile prediction and alloy design of gray cast iron.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Prediction of tensile strength of concrete using the machine learning methods
    Bagher Shemirani A.
    Lawaf M.P.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 1207 - 1223
  • [32] The tensile strength and Brinell hardness of cast iron
    Leon, A
    ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1936, 80 : 281 - 282
  • [33] RESIDUAL-STRESS DISTRIBUTION AND MICROSTRUCTURE OF FRACTURES IN BLANKS OF CYLINDER SHELLS OF GRAY CAST-IRON
    ZELENOVA, VD
    BUTAEV, EI
    KNOROZOVA, TB
    LUSHNIKOV, SA
    MURATOV, FG
    METAL SCIENCE AND HEAT TREATMENT, 1982, 24 (5-6) : 382 - 386
  • [34] Microstructure and mechanical properties of pearlitic gray cast iron
    Collini, L.
    Nicoletto, G.
    Konecna, R.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 488 (1-2): : 529 - 539
  • [35] Composition and Optical Microstructure of Good Gray Cast Iron
    Duraisamy, Nithyadevi
    Veeravazhuthi, V.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 508 - 509
  • [36] Optimized Durability Prediction of Cast Iron Based on Local Microstructure
    Corinna Thomser
    Mathias Bodenburg
    Joerg C. Sturm
    International Journal of Metalcasting, 2017, 11 : 207 - 215
  • [37] OPTIMIZED DURABILITY PREDICTION OF CAST IRON BASED ON LOCAL MICROSTRUCTURE
    Thomser, Corinna
    Bodenburg, Mathias
    Sturm, Joerg C.
    INTERNATIONAL JOURNAL OF METALCASTING, 2017, 11 (02) : 207 - 215
  • [38] A study on tensile strength mechanism of hypoeutectic gray cast iron reinforced by composite silicon carbide powder
    Wang, Chunfeng
    Yang, Jun
    Liu, Guilin
    Gao, Hong
    Chen, Meiling
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2022, 23 (04): : 466 - 475
  • [39] Influence of Microscopic Effects on the Static Tensile Strength of Gray Cast Iron HT200 Specimens
    Fan, L.
    Hu, H. B.
    Tang, X. S.
    He, J. J.
    Chen, W.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [40] Machine Learning Assisted Tensile Strength Prediction and Optimization of Ti Alloy
    Fatriansyah, Jaka Fajar
    Aqila, Muhamad Rafi
    Suhariadi, Iping
    Federico, Andreas
    Ajiputro, Dzaky Iman
    Pradana, Agrin Febrian
    Andreano, Yossi
    Rizky, Muhammad Ali Yafi
    Dhaneswara, Donanta
    Lockman, Zainovia
    Hur, Su-Mi
    IEEE ACCESS, 2024, 12 : 119660 - 119670