The Brezis-Nirenberg Problem for the Fractional p-Laplacian in Unbounded Domains

被引:2
|
作者
Shen, Yan Sheng [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Brezis-Nirenberg problem; fractional Poincare inequality; fractional p-Laplacian; unbounded cylinder type domains; concentration-compactness principle; ELLIPTIC PROBLEMS; POINCARE INEQUALITIES; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; NONLOCAL PROBLEMS; EQUATIONS; EXISTENCE; COMPACTNESS;
D O I
10.1007/s10114-023-2108-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of nontrivial solutions to the well-known Brezis- Nirenb erg problem involving the fractional p-Laplace operator in unbounded cylinder type domains. By means of the fractional Poincare<acute accent> inequality in unbounded cylindrical domains, we first study the asymptotic property of the first eigenvalue lambda(p,s)((sic)) with respect to the domain (sic). Then, by applying the concentration-compactness principle for fractional Sobolev spaces in unbounded domains, we prove the existence results. The present work complements the results of Mosconi-Perera-Squassina-Yang [The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differential Equations, 55(4), 25 pp. 2016] to unbounded domains and extends the classical Brezis-Nirenb erg type results of Ramos-Wang-Willem [Positive solutions for elliptic equations with critical growth in unbounded domains. In: Chapman Hall/CRC Press, Boca Raton, 2000, 192-199] to the fractional p-Laplacian setting.
引用
收藏
页码:2181 / 2206
页数:26
相关论文
共 50 条
  • [41] A Brezis-Nirenberg type result for a nonlocal fractional operator
    Mawhin, Jean
    Bisci, Giovanni Molica
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 73 - 93
  • [42] An integral type Brezis-Nirenberg problem on the Heisenberg group
    Han, Yazhou
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) : 4544 - 4565
  • [43] The Brezis-Nirenberg problem near criticality in dimension 3
    del Pino, M
    Dolbeault, J
    Musso, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (12): : 1405 - 1456
  • [44] The solution gap of the Brezis-Nirenberg problem on the hyperbolic space
    Benguria, Soledad
    [J]. MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03): : 537 - 559
  • [45] Multispike solutions for the Brezis-Nirenberg problem in dimension three
    Musso, Monica
    Salazar, Dora
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) : 6663 - 6709
  • [46] New numerical solutions for the Brezis-Nirenberg problem on Sn
    Bandle, C
    Stingelin, S
    [J]. Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 13 - 21
  • [47] The Brezis-Nirenberg problem for the curl-curl operator
    Mederski, Jaroslaw
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (05) : 1345 - 1380
  • [48] Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6
    Pistoia, Angela
    Vaira, Giusi
    [J]. ANALYSIS IN THEORY AND APPLICATIONS, 2022, 38 (01) : 1 - 25
  • [49] THE BREZIS-NIRENBERG PROBLEM FOR MIXED LOCAL AND NONLOCAL OPERATORS
    Biagi, Stefano
    [J]. BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2023, 14 (01) : 15 - 37
  • [50] UNIQUENESS FOR THE BREZIS-NIRENBERG PROBLEM ON COMPACT EINSTEIN MANIFOLDS
    Huang, Guangyue
    Chen, Wenyi
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2008, 45 (03) : 609 - 614