Efficient oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a two-enzyme system: Combination of a bacterial laccase with catalase

被引:9
|
作者
Wei, Jiaxing [1 ]
Yang, Lu [1 ]
Feng, Wei [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Biol Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
CATALYZED OXIDATION; GAS;
D O I
10.1016/j.enzmictec.2022.110144
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
2,5-Furandicarboxylic acid (FDCA) can be used for synthesis of various polyesters and polyamides. It can be produced from oxidation of 5-hydroxymethylfurfural (HMF), a biomass-based platform chemical. In this work, a new catalyst CotA laccase/TEMPO/catalase has been presented and used for efficient and selective oxidation of HMF to FDCA. Dioxygen O-2, which is in-situ generated from the decomposition of H2O2 by catalase, is used as the oxidant. In comparison to using ambient air as the oxidant, using the in-situ generated O-2 as the oxidant has significantly increased the catalytic efficiency. Dioxygen O-2 can be generated in a convenient and easy way using clean H2O2 as the source. It has been found that continuous generation of O-2 is essential, and over generation of O-2 is not necessary because of the limitation of the O-2 diffusion into the inner space of CotA laccase. It has been demonstrated that, by coupling with the electron transfer mediator TEMPO and catalase, the bacterial laccase can efficiently oxidize HMF to produce FDCA.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659
  • [2] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China(Chemistry), 2017, 60 (07) : 950 - 957
  • [3] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China Chemistry, 2017, (07) : 950 - 957
  • [4] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Zheng, Lufan
    Zhao, Junqi
    Du, Zexue
    Zong, Baoning
    Liu, Haichao
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (07) : 950 - 957
  • [5] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China Chemistry, 2017, 60 : 950 - 957
  • [6] A Highly Efficient Nickel Phosphate Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Xu, Xuli
    Song, Xiaojie
    Liu, Xiaohui
    Wang, Haifeng
    Hu, Yongfeng
    Xia, Jie
    Chen, Jiacheng
    Shakouri, Mohsen
    Guo, Yong
    Wang, Yanqin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (17) : 5538 - 5547
  • [7] Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids
    Chen, Ruru
    Xin, Jiayu
    Yan, Dongxia
    Dong, Huixian
    Lu, Xingmei
    Zhang, Suojiang
    CHEMSUSCHEM, 2019, 12 (12) : 2715 - 2724
  • [8] Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Wei, Zange
    Li, Wenhao
    Yuan, Fang
    Sun, Weizhen
    Zhao, Ling
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (50) : 18352 - 18361
  • [9] Complete oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a novel enzyme-nanozyme hybrid catalyst
    He, Aiyong
    Dong, Liangliang
    Xu, Ning
    El-Hout, Soliman I.
    Xia, Jun
    Qiu, Zhongyang
    He, Jianlong
    Deng, Yuanfang
    Liu, Xiaoyan
    Hu, Lei
    Xu, Jiaxing
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [10] Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions
    Liu, Bing
    Ren, Yongshen
    Zhang, Zehui
    GREEN CHEMISTRY, 2015, 17 (03) : 1610 - 1617