Process-dependent reconfigurability in a gradient ferroelectric field-effect transistor

被引:0
|
作者
Wen, Jiaxuan [1 ,2 ]
Yao, Songyou [1 ,2 ]
Zhang, Xiaoyue [1 ,3 ]
Zheng, Yue [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, Guangdong Prov Key Lab Magnetoelectr Phys & Device, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Ctr Phys Mech & Biophys, Sch Phys, Guangzhou 510275, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric rectifiers - Ferroelectricity - Fluorine compounds;
D O I
10.1063/5.0152426
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we demonstrate reconfigurable ferroelectric field-effect transistors (Fe-FETs) exhibiting process dependence based on poly(vinylidene fluoride-trifluoroethylene)/molybdenum telluride[P(VDF-TrFE)/MoTe2] heterostructures. By introducing a thickness gradient to a ferroelectric polymer, we constructed a gradient distribution of coercive voltage. This enables programmable configuration of the device (n-p, p-n, p-p, or n-n) depending on the input voltage sequence. Our Fe-FETs exhibit multilevel storage capacity and logic ability, including an on/off ratio of 10(6), an adjustable rectification ratio from 1 to 45, and a reversible rectification direction. The use of such a structure-gradient design in an Fe-FET provides a valuable strategy for realizing process-dependent reconfigurability and the creation of intelligent devices.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] A ferroelectric semiconductor field-effect transistor
    Mengwei Si
    Atanu K. Saha
    Shengjie Gao
    Gang Qiu
    Jingkai Qin
    Yuqin Duan
    Jie Jian
    Chang Niu
    Haiyan Wang
    Wenzhuo Wu
    Sumeet K. Gupta
    Peide D. Ye
    Nature Electronics, 2019, 2 : 580 - 586
  • [2] A ferroelectric semiconductor field-effect transistor
    Si, Mengwei
    Saha, Atanu K.
    Gao, Shengjie
    Qiu, Gang
    Qin, Jingkai
    Duan, Yuqin
    Jian, Jie
    Niu, Chang
    Wang, Haiyan
    Wu, Wenzhuo
    Gupta, Sumeet K.
    Ye, Peide D.
    NATURE ELECTRONICS, 2019, 2 (12) : 580 - 586
  • [3] The ferroelectric field-effect transistor with negative capacitance
    I. Luk’yanchuk
    A. Razumnaya
    A. Sené
    Y. Tikhonov
    V. M. Vinokur
    npj Computational Materials, 8
  • [4] The ferroelectric field-effect transistor with negative capacitance
    Luk'yanchuk, I
    Razumnaya, A.
    Sene, A.
    Tikhonov, Y.
    Vinokur, V. M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [5] The future of ferroelectric field-effect transistor technology
    Asif Islam Khan
    Ali Keshavarzi
    Suman Datta
    Nature Electronics, 2020, 3 : 588 - 597
  • [6] The future of ferroelectric field-effect transistor technology
    Khan, Asif Islam
    Keshavarzi, Ali
    Datta, Suman
    NATURE ELECTRONICS, 2020, 3 (10) : 588 - 597
  • [7] The Quantum Metal Ferroelectric Field-Effect Transistor
    Frank, David J.
    Solomon, Paul M.
    Dubourdieu, Catherine
    Frank, Martin M.
    Narayanan, Vijay
    Theis, Thomas N.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) : 2145 - 2153
  • [8] A Silicon Nanowire Ferroelectric Field-Effect Transistor
    Sessi, Violetta
    Simon, Maik
    Mulaosmanovic, Halid
    Pohl, Darius
    Loeffler, Markus
    Mauersberger, Tom
    Fengler, Franz P. G.
    Mittmann, Terence
    Richter, Claudia
    Slesazeck, Stefan
    Mikolajick, Thomas
    Weber, Walter M.
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (04):
  • [9] A Compact Model of Ferroelectric Field-Effect Transistor
    Tung, Chien-Ting
    Pahwa, Girish
    Salahuddin, Sayeef
    Hu, Chenming
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (08) : 1363 - 1366
  • [10] Field-effect transistor memories based on ferroelectric polymers
    Yujia Zhang
    Haiyang Wang
    Lei Zhang
    Xiaomeng Chen
    Yu Guo
    Huabin Sun
    Yun Li
    Journal of Semiconductors, 2017, 38 (11) : 5 - 18