A Compact Model of Ferroelectric Field-Effect Transistor

被引:9
|
作者
Tung, Chien-Ting [1 ]
Pahwa, Girish [1 ]
Salahuddin, Sayeef [1 ]
Hu, Chenming [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
Iron; Computational modeling; Semiconductor device modeling; Integrated circuit modeling; FeFETs; Switches; MOSFET; Compact model; ferroelectric; ferroelectric field-effect transistor (FEFET); hafnium zirconium oxide (HZO);
D O I
10.1109/LED.2022.3182141
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we present a compact model of ferroelectric field-effect-transistor (FEFET). The model consists of a ferroelectric (FE) capacitor model and a Berkeley Short-channel IGFET Model (BSIM), a standard SPICE MOSFET model. The FE model, similar to the nucleation-limited-switching model, is based on the statistical multidomain dynamics of FE materials. The charge equality between FE and MOSFET is satisfied through the SPICE simulator. The model reproduces the steep switching in the reverse bias region observed in experimental FEFETs and the current drop at both major loop and minor loop switching. A versatile inverted-memory-window (IMW) model can model the IMW behavior of FEFET that may be caused by charge trapping. We demonstrate that the reported model can accurately fit the published data of Fin-FEFET and FDSOI-FEFET under different bias conditions.
引用
收藏
页码:1363 / 1366
页数:4
相关论文
共 50 条
  • [1] An Empirical Compact Model for Ferroelectric Field-Effect Transistor Calibrated to Experimental Data
    Wang, Zheng
    Tasneem, Nujhat
    Islam, Muhammad M.
    Chen, Hang
    Hur, Jae
    Chern, Winston
    Yu, Shimeng
    Khan, Asif
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (03) : 1519 - 1523
  • [2] A ferroelectric semiconductor field-effect transistor
    Mengwei Si
    Atanu K. Saha
    Shengjie Gao
    Gang Qiu
    Jingkai Qin
    Yuqin Duan
    Jie Jian
    Chang Niu
    Haiyan Wang
    Wenzhuo Wu
    Sumeet K. Gupta
    Peide D. Ye
    [J]. Nature Electronics, 2019, 2 : 580 - 586
  • [3] A ferroelectric semiconductor field-effect transistor
    Si, Mengwei
    Saha, Atanu K.
    Gao, Shengjie
    Qiu, Gang
    Qin, Jingkai
    Duan, Yuqin
    Jian, Jie
    Niu, Chang
    Wang, Haiyan
    Wu, Wenzhuo
    Gupta, Sumeet K.
    Ye, Peide D.
    [J]. NATURE ELECTRONICS, 2019, 2 (12) : 580 - 586
  • [4] A Retention Model for Ferroelectric-Gate Field-Effect Transistor
    Huang, Shuai
    Zhong, Xiangli
    Zhang, Yi
    Tan, Qiuhong
    Wang, Jinbin
    Zhou, Yichun
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (10) : 3388 - 3394
  • [5] The ferroelectric field-effect transistor with negative capacitance
    I. Luk’yanchuk
    A. Razumnaya
    A. Sené
    Y. Tikhonov
    V. M. Vinokur
    [J]. npj Computational Materials, 8
  • [6] The ferroelectric field-effect transistor with negative capacitance
    Luk'yanchuk, I
    Razumnaya, A.
    Sene, A.
    Tikhonov, Y.
    Vinokur, V. M.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [7] The Quantum Metal Ferroelectric Field-Effect Transistor
    Frank, David J.
    Solomon, Paul M.
    Dubourdieu, Catherine
    Frank, Martin M.
    Narayanan, Vijay
    Theis, Thomas N.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) : 2145 - 2153
  • [8] The future of ferroelectric field-effect transistor technology
    Khan, Asif Islam
    Keshavarzi, Ali
    Datta, Suman
    [J]. NATURE ELECTRONICS, 2020, 3 (10) : 588 - 597
  • [9] The future of ferroelectric field-effect transistor technology
    Asif Islam Khan
    Ali Keshavarzi
    Suman Datta
    [J]. Nature Electronics, 2020, 3 : 588 - 597
  • [10] A Silicon Nanowire Ferroelectric Field-Effect Transistor
    Sessi, Violetta
    Simon, Maik
    Mulaosmanovic, Halid
    Pohl, Darius
    Loeffler, Markus
    Mauersberger, Tom
    Fengler, Franz P. G.
    Mittmann, Terence
    Richter, Claudia
    Slesazeck, Stefan
    Mikolajick, Thomas
    Weber, Walter M.
    [J]. ADVANCED ELECTRONIC MATERIALS, 2020, 6 (04):