Carbon nanotube supported zinc, cobalt, nitrogen, sulfur-doped porous carbon as electrocatalyst for enhanced oxygen reduction reaction

被引:4
|
作者
Gao, Haili [1 ]
Zhao, Jingfang [1 ]
Ma, Yaqiong [1 ]
Liu, Yunpeng [1 ]
Zhang, Yong [1 ]
Zhang, Linsen [1 ]
Yin, Zhigang [1 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Mat & Chem Engn, Zhengzhou 450001, Peoples R China
关键词
Oxygen reduction reaction; Zeolitic imidazolate framework; Fuel cell; Non-noble metal catalyst; Carbon nanotube; METAL-FREE ELECTROCATALYST; HIGHLY EFFICIENT; GRAPHENE OXIDE; CATALYST; FE; CO; COMPOSITES; SITES; ZIF-8; ANODE;
D O I
10.1016/j.ijhydene.2023.09.144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotube (CNT) supported zinc, cobalt, nitrogen, sulfur-doped porous carbon (CNT@ZnCo/NSC) catalysts are prepared by in situ growth of sulfur-containing bimetal zeolitic imidazolate framework (S-ZnCo-ZIF) polyhedrons on CNT with subsequent heat treatment. The microstructure, morphology, particle size distribution, specific surface area, and pore-size distribution of the catalysts are characterized by multiple techniques. CNT@ZnCo/NSC exhibits excellent catalytic activity for oxygen reduction reaction (ORR) with onset potential of 0.98 V and half-wave potential of 0.83 V, respectively, which are close to those of Pt/C. The addition of CNT inhibits the agglomeration and improves the conductivity of the catalysts, while S doping enhances the electrochemical surface area and introduces active sites. The special structure makes CNT@ZnCo/NSC possess proper specific surface area (390.8 m(2) g(-1)) and large average pore size (5.26 nm). CNT@ZnCo/NSC contains more graphite-N (21%) and pyridine-N (55.9%) than CNT@ZnCo/NC (20%, 46.5%) and ZnCo/NC (8.2%, 45.8%). CNT@ZnCo/NSC catalyst has better methanol tolerance and long-term stability than commercial Pt/C. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1229 / 1241
页数:13
相关论文
共 50 条
  • [41] A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction
    Jiang, Tingting
    Wang, Yi
    Wang, Kun
    Liang, Yeru
    Wu, Dingcai
    Tsiakaras, Panagiotis
    Song, Shuqin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 189 : 1 - 11
  • [42] Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction
    Zhang, Jie
    Chen, Jinwei
    Jiang, Yiwu
    Zhou, Feilong
    Wang, Gang
    Wang, Ruilin
    APPLIED SURFACE SCIENCE, 2016, 389 : 157 - 164
  • [43] Cobalt/Nitrogen-Doped Porous Carbon Nanosheets Derived from Polymerizable Ionic Liquids as Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reaction
    Gao, Jian
    Ma, Na
    Zheng, Yumei
    Zhang, Jiafeng
    Gui, Jianzhou
    Guo, Chunkai
    An, Huiqin
    Tan, Xiaoyao
    Yin, Zhen
    Ma, Ding
    CHEMCATCHEM, 2017, 9 (09) : 1601 - 1609
  • [44] Accelerating the oxygen reduction reaction via a bioinspired carbon-supported zinc electrocatalyst
    Nahavandi, Faezeh
    Seyyedi, Behnam
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2019, 66 (03) : 291 - 296
  • [45] Facile synthesis of magnesium ferrite nanoparticles supported on nitrogen and sulfur co-doped carbon black as an efficient electrocatalyst for oxygen reduction reaction
    Kiani, Maryam
    Zhang, Jie
    Chen, Jinwei
    Luo, Yan
    Chen, Yihan
    Fan, Jinlong
    Wang, Gang
    Wang, Ruilin
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (05)
  • [46] Cobalt/nitrogen doped hollow carbon sphere-bamboo like carbon nanotube for highly efficient oxygen reduction reaction
    Gao, Haili
    Ma, Zheng
    Zhao, Jingfang
    Lin, Jing
    Gao, Kezheng
    Zhang, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 999
  • [47] Facile synthesis of magnesium ferrite nanoparticles supported on nitrogen and sulfur co-doped carbon black as an efficient electrocatalyst for oxygen reduction reaction
    Maryam Kiani
    Jie Zhang
    Jinwei Chen
    Yan Luo
    Yihan Chen
    Jinlong Fan
    Gang Wang
    Ruilin Wang
    Journal of Nanoparticle Research, 2019, 21
  • [48] Nanostructured tubular carbon materials doped with cobalt as electrocatalyst for efficient oxygen reduction reaction
    Zhu, Zhaoqi
    Han, Jingxin
    Cui, Jie
    Zhou, Peilei
    Yang, Zifeng
    Sun, Hanxue
    Li, An
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (13) : 8143 - 8158
  • [49] Astragali Radix-derived nitrogen-doped porous carbon: An efficient electrocatalyst for the oxygen reduction reaction
    Li, Jinmei
    Wang, Wei
    Wang, Fengxia
    Kang, Yumao
    Tan, Ting
    Lei, Ziqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (02) : 551 - 561
  • [50] Nanostructured tubular carbon materials doped with cobalt as electrocatalyst for efficient oxygen reduction reaction
    Zhaoqi Zhu
    Jingxin Han
    Jie Cui
    Peilei Zhou
    Zifeng Yang
    Hanxue Sun
    An Li
    Journal of Materials Science, 2021, 56 : 8143 - 8158