Deep learning-based protoacoustic signal denoising for proton range verification

被引:3
|
作者
Wang, Jing [1 ,2 ]
Sohn, James J. [3 ]
Lei, Yang [1 ,2 ]
Nie, Wei [4 ]
Zhou, Jun [1 ,2 ]
Avery, Stephen [5 ]
Liu, Tian [6 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Northwestern Univ, Dept Radiat Oncol, Chicago, IL USA
[4] Inova Schar Canc Inst, Radiat Oncol Div, Fairfax, VA USA
[5] Univ Penn, Dept Radiat Oncol, Philadelphia, PA USA
[6] Mt Sinai Med Ctr, Dept Radiat Oncol, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
protoacoustic; signal denoising; Bragg peak; deep learning; stack auto-encoder; POSITRON-EMISSION-TOMOGRAPHY; BEAM; THERAPY; AUTOENCODERS; DELIVERY;
D O I
10.1088/2057-1976/acd257
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Proton therapy is a type of radiation therapy that can provide better dose distribution compared to photon therapy by delivering most of the energy at the end of range, which is called the Bragg peak (BP). The protoacoustic technique was developed to determine the BP locations in vivo, but it requires a large dose delivery to the tissue to obtain a high number of signal averaging (NSA) to achieve a sufficient signal-to-noise ratio (SNR), which is not suitable for clinical use. A novel deep learning-based technique has been proposed to denoise acoustic signals and reduce BP range uncertainty with much lower doses. Three accelerometers were placed on the distal surface of a cylindrical polyethylene (PE) phantom to collect protoacoustic signals. In total, 512 raw signals were collected at each device. Device-specific stack autoencoder (SAE) denoising models were trained to denoise the noise-containing input signals, which were generated by averaging only 1, 2, 4, 8, 16, or 24 raw signals (low NSA signals), while the clean signals were obtained by averaging 192 raw signals (high NSA). Both supervised and unsupervised training strategies were employed, and the evaluation of the models was based on mean squared error (MSE), SNR, and BP range uncertainty. Overall, the supervised SAEs outperformed the unsupervised SAEs in BP range verification. For the high accuracy detector, it achieved a BP range uncertainty of 0.20 +/- 3.44 mm by averaging over 8 raw signals, while for the other two low accuracy detectors, they achieved the BP uncertainty of 1.44 +/- 6.45 mm and -0.23 +/- 4.88 mm by averaging 16 raw signals, respectively. This deep learning-based denoising method has shown promising results in enhancing the SNR of protoacoustic measurements and improving the accuracy in BP range verification. It greatly reduces the dose and time for potential clinical applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Deep Learning-based Denoising for Magnetic Resonance Spectroscopy Signals
    Lei, Yang
    Ji, Bing
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [22] Deep learning-based PET image denoising and reconstruction: a review
    Fumio Hashimoto
    Yuya Onishi
    Kibo Ote
    Hideaki Tashima
    Andrew J. Reader
    Taiga Yamaya
    Radiological Physics and Technology, 2024, 17 : 24 - 46
  • [23] ECGD-Net: Deep Learning-based ECG Signal Denoising with MIEMD Filtering for Reliable Cardiac Monitoring
    Alugonda, Rajani
    Kodati, Satya Prasad
    IETE JOURNAL OF RESEARCH, 2025,
  • [24] Deep learning-based signal detection in OFDM systems
    Chang D.
    Zhou J.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2020, 50 (05): : 912 - 917
  • [25] Deep Reinforcement Learning-based Traffic Signal Control
    Ruan, Junyun
    Tang, Jinzhuo
    Gao, Ge
    Shi, Tianyu
    Khamis, Alaa
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART MOBILITY, SM, 2023, : 21 - 26
  • [26] 3D in vivo dose verification in prostate proton therapy with deep learning-based proton-acoustic imaging
    Jiang, Zhuoran
    Sun, Leshan
    Yao, Weiguang
    Wu, Q. Jackie
    Xiang, Liangzhong
    Ren, Lei
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (21):
  • [27] A Survey on Deep Learning-Based Traffic Signal Control
    Si, Qinbatu
    Yang, Lirun
    Bao, Jingjing
    Lin, Yangfei
    Bao, Wugedele
    Wu, Celimuge
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2025, 34 (02)
  • [28] Dynamic PET Image Denoising With Deep Learning-Based Joint Filtering
    He, Yuru
    Cao, Shuangliang
    Zhang, Hongyan
    Sun, Hao
    Wang, Fanghu
    Zhu, Huobiao
    Lv, Wenbing
    Lu, Lijun
    IEEE ACCESS, 2021, 9 : 41998 - 42012
  • [29] Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification
    Nurmaini, Siti
    Darmawahyuni, Annisa
    Mukti, Akhmad Noviar Sakti
    Rachmatullah, Muhammad Naufal
    Firdaus, Firdaus
    Tutuko, Bambang
    ELECTRONICS, 2020, 9 (01)
  • [30] A Deep Learning Approach to Radio Signal Denoising
    Almazrouei, Ebtesam
    Gianini, Gabriele
    Almoosa, Nawaf
    Damiani, Ernesto
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOP (WCNCW), 2019,