Mixed-Effects Height Prediction Model for Juniperus procera Trees from a Dry Afromontane Forest in Ethiopia

被引:1
|
作者
Teshome, Mindaye [1 ,2 ]
Braz, Evaldo Munoz [3 ]
Torres, Carlos Moreira Miquelino Eleto [1 ]
Raptis, Dimitrios Ioannis [4 ]
de Mattos, Patricia Povoa [3 ]
Temesgen, Hailemariam [5 ]
Rubio-Camacho, Ernesto Alonso [6 ]
Sileshi, Gudeta Woldesemayat [7 ]
机构
[1] Univ Fed Vicosa UFV, Dept Engn Florestal, BR-36570900 Vicosa, MG, Brazil
[2] Ethiopian Forestry Dev, POB 24536, Addis Ababa 1000, Ethiopia
[3] Embrapa Florestas, Estr Ribeira,Km 111 SN Guaraituba CP 319, BR-83411000 Colombo, PR, Brazil
[4] Int Hellenic Univ, Dept Forestry & Nat Environm, 1st Km Drama Mikrohori, Drama 66100, Greece
[5] Oregon State Univ, Coll Forestry, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA
[6] Ctr Invest Reg Pacif Ctr, Inst Nacl Invest Forestales Agr & Pecuarias, Av Biodivers 2470, Tepatitlan De Morelos 47600, Jalisco, Mexico
[7] Addis Ababa Univ, Dept Plant Biol & Biodivers Management, POB 1176, Addis Ababa 1176, Ethiopia
来源
FORESTS | 2024年 / 15卷 / 03期
关键词
forest inventory; native tree; allometry; calibration; stand volume; Juniperus procera; DIAMETER MODELS; GROWTH; PINE; ALLOMETRY; EQUATIONS; STANDS; CARBON; BIOMASS;
D O I
10.3390/f15030443
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Tree height is a crucial variable in forestry science. In the current study, an accurate height prediction model for Juniperus procera Hochst. ex Endl. trees were developed, using a nonlinear mixed-effects modeling approach on 1215 observations from 101 randomly established plots in the Chilimo Dry Afromontane Forest in Ethiopia. After comparing 14 nonlinear models, the most appropriate base model was selected and expanded as a mixed-effects model, using the sample plot as a grouping factor, and adding stand-level variables to increase the model's prediction ability. Using a completely independent dataset of observations, the best sampling alternative for calibration was determined using goodness-of-fit criteria. Our findings revealed that the Michaelis-Menten model outperformed the other models, while the expansion to the mixed-effects model significantly improved the height prediction. On the other hand, incorporating the quadratic mean diameter and the stem density slightly improved the model's prediction ability. The fixed-effects of the selected model can also be used to predict the mean height of Juniperus procera trees as a marginal solution. The calibration response revealed that a systematic selection of the three largest-diameter trees at the plot level is the most effective for random effect estimation across new plots or stands.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A climate sensitive nonlinear mixed-effects height to crown base model: a study focuses on Phyllostachys pubescens
    Zhou, Xiao
    Zhang, Xuan
    Li, Zhen
    Liu, Liyang
    Sharma, Ram P.
    Guan, Fengying
    [J]. TREES-STRUCTURE AND FUNCTION, 2024, 38 (04): : 849 - 862
  • [42] A mixed-effects model for the dbh-height relationship of shortleaf pine (Pinus echinata Mill.)
    Budhathoki, Chakra B.
    Lynch, Thomas B.
    Guldin, James M.
    [J]. SOUTHERN JOURNAL OF APPLIED FORESTRY, 2008, 32 (01): : 5 - 11
  • [43] Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees
    Fokkema, M.
    Smits, N.
    Zeileis, A.
    Hothorn, T.
    Kelderman, H.
    [J]. BEHAVIOR RESEARCH METHODS, 2018, 50 (05) : 2016 - 2034
  • [44] MULTILEVEL NONLINEAR MIXED-EFFECTS MODEL AND MACHINE LEARNING FOR PREDICTING THE VOLUME OF Eucalyptus SPP. TREES
    Dantas, Daniel
    Calegario, Natalino
    Acerbi Junior, Fausto Weimar
    Chaves Carvalho, Samuel de Padua
    Isaac Junior, Marcos Antonio
    Melo, Elliezer de Almeida
    [J]. CERNE, 2020, 26 (01) : 48 - 57
  • [45] Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees
    M. Fokkema
    N. Smits
    A. Zeileis
    T. Hothorn
    H. Kelderman
    [J]. Behavior Research Methods, 2018, 50 : 2016 - 2034
  • [46] Modeling dominant height growth based on nonlinear mixed-effects model:: a clonal Eucalyptus plantation case study
    Calegario, N
    Daniels, RE
    Maestri, R
    Neiva, R
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2005, 204 (01) : 11 - 20
  • [47] Mixed-effects generalized height-diameter model: A tool for forestry management of young sweet chestnut stands
    Patricio, Maria Sameiro
    Dias, Cremildo R. G.
    Nunes, Luis
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2022, 514
  • [48] A mixed-effects model of two-phase degradation process for reliability assessment and RUL prediction
    Wang, Hongyu
    Ma, Xiaobing
    Zhao, Yu
    [J]. MICROELECTRONICS RELIABILITY, 2020, 107
  • [49] A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain
    Crecente-Campo, Felipe
    Tome, Margarida
    Soares, Paula
    Dieguez-Aranda, Ulises
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (05) : 943 - 952
  • [50] MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments
    Grantham, Neal S.
    Guan, Yawen
    Reich, Brian J.
    Borer, Elizabeth T.
    Gross, Kevin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 599 - 609