Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction

被引:1
|
作者
Dong, Bo [1 ]
Jing, Yusheng [1 ]
Zhu, Xinye [1 ]
Cui, Yiming [1 ]
An, Tianjiao [1 ]
机构
[1] Changchun Univ Technol, Dept Control Sci & Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Modular robot manipulator; Adaptive impedance control; Physical human robot interaction; Human motion intention estimation; FORCE TRACKING; TASK;
D O I
10.1007/s10846-023-01978-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Impedance learning adaptive super-twisting control of a robotic exoskeleton for physical human-robot interaction
    Brahmi, Brahim
    Rahman, Mohammad Habibur
    Saad, Maarouf
    IET CYBER-SYSTEMS AND ROBOTICS, 2023, 5 (01)
  • [42] Dissipative Control for Physical Human-Robot Interaction
    Bowyer, Stuart A.
    Rodriguez y Baena, Ferdinando
    IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (06) : 1281 - 1293
  • [43] Learning-based Adaptive Optimal Impedance Control to Enhance Physical Human-robot Interaction Performance
    Guo, Yida
    Tian, Yang
    Wang, Haoping
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (09) : 3053 - 3062
  • [44] Intention-Driven Variable Impedance Control for Physical Human-Robot Interaction
    Huo, Yingxin
    Li, Xiang
    Zhang, Xuan
    Sun, Dong
    2021 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2021, : 1220 - 1225
  • [45] Virtual Impedance Control for Safe Human-Robot Interaction
    Sheng-Yen Lo
    Ching-An Cheng
    Han-Pang Huang
    Journal of Intelligent & Robotic Systems, 2016, 82 : 3 - 19
  • [46] Impedance Control with Bounded Actions for Human-Robot Interaction
    Ramirez-Vera, Victor, I
    Mendoza-Gutierrez, Marco O.
    Bonilla-Gutierrez, Isela
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 14989 - 15000
  • [47] Virtual Impedance Control for Safe Human-Robot Interaction
    Lo, Sheng-Yen
    Cheng, Ching-An
    Huang, Han-Pang
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 82 (01) : 3 - 19
  • [48] Continuous Critic Learning for Robot Control in Physical Human-Robot Interaction
    Wang, Chen
    Li, Yanan
    Ge, Shuzhi Sam
    Tee, Keng Peng
    Lee, Tong Heng
    2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), 2013, : 833 - 838
  • [49] Interface Design of a Physical Human-Robot Interaction System for Human Impedance Adaptive Skill Transfer
    Yang, Chenguang
    Zeng, Chao
    Liang, Peidong
    Li, Zhijun
    Li, Ruifeng
    Su, Chun-Yi
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2018, 15 (01) : 329 - 340
  • [50] Decentralized adaptive impedance controller for robot manipulators in task space
    Xu, Weimin
    Chai, Tianyou
    Yan, Baocen
    Jiqiren/Robot, 1997, 19 (01): : 65 - 70