Analogue of Ramanujan's function k(t) for the cubic continued fraction

被引:1
|
作者
Park, Yoon Kyung [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Sch Nat Sci, 232 Gongneung Ro, Seoul 01811, South Korea
关键词
Ramanujan's cubic continued fraction; modular function; class field; Kronecker's congruences; FIELDS;
D O I
10.1142/S1793042123501026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the modularity of the function u(t) = C(t)C(2t), where C(t) is Ramanujan's cubic continued fraction. It is an analogue of Ramanujan's function k(t) = r(t)r(2t)(2), where r(t) is the Rogers-Ramanujan continued fraction. We first prove the modularity of u(t) and express C(t) and C(2t) in terms of u(t). Subsequently, we find modular equations of u(t) of level n for every positive integer n by using affine models of modular curves. Finally, we demonstrate that the value of u(t) generates the ray class field over an imaginary quadratic field modulo 2 for some t in an imaginary quadratic field.
引用
收藏
页码:2101 / 2120
页数:20
相关论文
共 50 条
  • [21] THE LEVEL 12 ANALOGUE OF RAMANUJAN'S FUNCTION k
    Cooper, Shaun
    Ye, Dongxi
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 101 (01) : 29 - 53
  • [22] Modular curves and Ramanujan's continued fraction
    Cais, Bryden
    Conrad, Brian
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 597 : 27 - 104
  • [23] The Rogers-Ramanujan continued fraction and its level 13 analogue
    Cooper, Shaun
    Ye, Dongxi
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 193 : 99 - 127
  • [24] Ramanujan's Continued Fraction, a Generalization and Partitions
    Srivastava, Bhaskar
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2005, 45 (02): : 273 - 280
  • [25] The level 13 analogue of the Rogers-Ramanujan continued fraction and its modularity
    Lee, Yoonjin
    Park, Yoon Kyung
    [J]. JOURNAL OF NUMBER THEORY, 2016, 168 : 306 - 333
  • [26] Explicit evaluations of a level 13 analogue of the Rogers-Ramanujan continued fraction
    Cooper, Shaun
    Ye, Dongxi
    [J]. JOURNAL OF NUMBER THEORY, 2014, 139 : 91 - 111
  • [27] ON RAMANUJAN CONTINUED-FRACTION
    RAMANATHAN, KG
    [J]. ACTA ARITHMETICA, 1984, 43 (03) : 209 - 226
  • [28] ON THE COEFFICIENTS OF A CONTINUED FRACTION OF RAMANUJAN
    Srivastava, Bhaskar
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2022, 111 (125): : 123 - 126
  • [29] Note on a continued fraction of Ramanujan
    Lamphere, RL
    [J]. RAMANUJAN JOURNAL, 2000, 4 (01): : 11 - 12
  • [30] A note on a continued fraction of Ramanujan
    Adiga, C
    Anitha, N
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (03) : 489 - 497