An Online Data-Driven Predictive Maintenance Approach for Railway Switches

被引:0
|
作者
Tome, Emanuel Sousa [1 ,2 ]
Ribeiro, Rita P. [1 ,2 ]
Veloso, Bruno [2 ,3 ,4 ]
Gama, Joao [2 ,3 ]
机构
[1] Univ Porto, Fac Sci, P-4169007 Porto, Portugal
[2] INESC TEC, P-4200465 Porto, Portugal
[3] Univ Porto, Fac Econ, P-4200464 Porto, Portugal
[4] Univ Portucalense, P-4200072 Porto, Portugal
关键词
Predictive maintenance; Remaining useful life; Online learning; Log Data; Railway switches; FAULT-DETECTION METHOD; PROGNOSTICS;
D O I
10.1007/978-3-031-23633-4_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An online data-driven predictive maintenance approach for railway switches using data logs obtained from the interlocking system of the railway infrastructure is proposed in this paper. The proposed approach is detailed described and consists of a two-phase process: anomaly detection and remaining useful life prediction. The approach is applied to and validated in a real case study, the Metro do Porto, from which seven months of data is available. The approach has been revealed to be satisfactory in detecting anomalies. The results open the possibilities for further studies and validation with a more extensive dataset on the remaining useful life prediction.
引用
收藏
页码:410 / 422
页数:13
相关论文
共 50 条
  • [31] Predictive Control of Autonomous Greenhouses: A Data-Driven Approach
    Kerkhof, L.
    Keviczky, T.
    [J]. 2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1229 - 1235
  • [32] A Data-driven Approach for Online Adaptation of Game Difficulty
    Yin, Haiyan
    Luo, Linbo
    Cai, Wentong
    Ong, Yew-Soon
    Zhong, Jinghui
    [J]. 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2015, : 146 - 153
  • [33] Component-Based Data-Driven Predictive Maintenance to Reduce Unscheduled Maintenance Events
    Verhagen, Wim J. C.
    De Boer, Lennaert W. M.
    Curran, Richard
    [J]. TRANSDISCIPLINARY ENGINEERING: A PARADIGM SHIFT, 2017, 5 : 3 - 10
  • [34] Data-driven maintenance planning and scheduling based on predicted railway track condition
    Sedghi, Mahdieh
    Bergquist, Bjarne
    Vanhatalo, Erik
    Migdalas, Athanasios
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (07) : 3689 - 3709
  • [35] Challenges from Data-Driven Predictive Maintenance in Brownfield Industrial Settings
    Koutroulis, Georgios
    Thalmann, Stefan
    [J]. BUSINESS INFORMATION SYSTEMS WORKSHOPS (BIS 2018), 2019, 339 : 461 - 467
  • [36] A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance
    Kamariotis, Antonios
    Tatsis, Konstantinos
    Chatzi, Eleni
    Goebel, Kai
    Straub, Daniel
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 242
  • [37] Data-Driven Fault Diagnostics and Prognostics for Predictive Maintenance: A Brief Overview
    Xu, Gaowei
    Liu, Min
    Wang, Jingwei
    Ma, Yumin
    Wang, Jian
    Li, Fei
    Shen, Weiming
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 103 - 108
  • [38] A data-driven predictive maintenance strategy based on accurate failure prognostics
    Chen, Chuang
    Wang, Cunsong
    Lu, Ningyun
    Jiang, Bin
    Xing, Yin
    [J]. EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (02): : 387 - 394
  • [39] Improving the Maintenance of Railway Switches through Proactive Approach
    Papa, Gregor
    Poklukar, Spela
    Franko, Attila
    Sillitti, Alberto
    Kancilija, Ales
    Sterk, Marjan
    Hegedus, Csaba
    Moldovan, Istvan
    Varga, Pal
    Riccardi, Mario
    Esposito, Salvatore
    [J]. ELECTRONICS, 2020, 9 (08) : 1 - 21
  • [40] A Data-Driven Approach to Reliability and Fault Analysis in Industrial Maintenance
    Semotam, Petr
    [J]. IFAC PAPERSONLINE, 2024, 58 (09): : 97 - 102