An Online Data-Driven Predictive Maintenance Approach for Railway Switches

被引:0
|
作者
Tome, Emanuel Sousa [1 ,2 ]
Ribeiro, Rita P. [1 ,2 ]
Veloso, Bruno [2 ,3 ,4 ]
Gama, Joao [2 ,3 ]
机构
[1] Univ Porto, Fac Sci, P-4169007 Porto, Portugal
[2] INESC TEC, P-4200465 Porto, Portugal
[3] Univ Porto, Fac Econ, P-4200464 Porto, Portugal
[4] Univ Portucalense, P-4200072 Porto, Portugal
关键词
Predictive maintenance; Remaining useful life; Online learning; Log Data; Railway switches; FAULT-DETECTION METHOD; PROGNOSTICS;
D O I
10.1007/978-3-031-23633-4_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An online data-driven predictive maintenance approach for railway switches using data logs obtained from the interlocking system of the railway infrastructure is proposed in this paper. The proposed approach is detailed described and consists of a two-phase process: anomaly detection and remaining useful life prediction. The approach is applied to and validated in a real case study, the Metro do Porto, from which seven months of data is available. The approach has been revealed to be satisfactory in detecting anomalies. The results open the possibilities for further studies and validation with a more extensive dataset on the remaining useful life prediction.
引用
收藏
页码:410 / 422
页数:13
相关论文
共 50 条
  • [1] A Survey on Data-Driven Predictive Maintenance for the Railway Industry
    Davari, Narjes
    Veloso, Bruno
    Costa, Gustavo de Assis
    Pereira, Pedro Mota
    Ribeiro, Rita P.
    Gama, Joao
    [J]. SENSORS, 2021, 21 (17)
  • [2] Data-driven predictive maintenance framework for railway systems
    Meira, Jorge
    Veloso, Bruno
    Bolon-Canedo, Veronica
    Marreiros, Goreti
    Alonso-Betanzos, Amparo
    Gama, Joao
    [J]. INTELLIGENT DATA ANALYSIS, 2023, 27 (04) : 1087 - 1102
  • [3] Data-Driven Predictive Maintenance
    Gama, Joao
    Ribeiro, Rita P.
    Veloso, Bruno
    [J]. IEEE INTELLIGENT SYSTEMS, 2022, 37 (04) : 27 - 29
  • [4] Data-driven Machinery Prognostics Approach using in a Predictive Maintenance Model
    Liao, Wenzhu
    Wang, Ying
    [J]. JOURNAL OF COMPUTERS, 2013, 8 (01) : 225 - 231
  • [5] A Review on Data-driven Predictive Maintenance Approach for Hydro Turbines/Generators
    Wang, Shewei
    Wang, Kesheng
    Li, Zhe
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP OF ADVANCED MANUFACTURING AND AUTOMATION, 2016, 24 : 30 - 35
  • [6] A Deep Learning Approach for Data-Driven Predictive Maintenance of Rolling Bearings
    Neto, Domicio
    Henriques, Jorge
    Gil, Paulo
    Teixeira, Cesar
    Cardoso, Alberto
    [J]. CONTROLO 2022, 2022, 930 : 587 - 598
  • [7] Prediction of Railway Track Condition for Preventive Maintenance by Using a Data-Driven Approach
    Vale, Cecilia
    Simoes, Maria Lurdes
    [J]. INFRASTRUCTURES, 2022, 7 (03)
  • [8] Data-driven optimization of railway maintenance for track geometry
    Sharma, Siddhartha
    Cui, Yu
    He, Qing
    Mohammadi, Reza
    Li, Zhiguo
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 90 : 34 - 58
  • [9] Data-driven Predictive Maintenance for Green Manufacturing
    Rodseth, Harald
    Schjolberg, Per
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP OF ADVANCED MANUFACTURING AND AUTOMATION, 2016, 24 : 36 - 41
  • [10] Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors
    Lu, Biao
    Chen, Zhen
    Zhao, Xufeng
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 212