On the Curvature of the Bismut Connection: Bismut-Yamabe Problem and Calabi-Yau with Torsion Metrics

被引:3
|
作者
Barbaro, Giuseppe [1 ]
机构
[1] Univ Sapienza, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Gauduchon-Yamabe problem; Calabi-Yau with torsion structures; Bismut scalar curvature; Bismut Ricci curvature; CHERN SCALAR CURVATURE; MANIFOLDS; THEOREMS;
D O I
10.1007/s12220-023-01203-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two natural problems concerning the scalar and the Ricci curvatures of the Bismut connection. Firstly, we study an analog of the Yamabe problem for Hermitian manifolds related to the Bismut scalar curvature, proving that, fixed a conformal Hermitian structure on a compact complex manifold, there exists a metric with constant Bismut scalar curvature in that class when the expected constant scalar curvature is non-negative. A similar result is given in the general case of Gauduchon connections. We then study an Einstein-type condition for the Bismut Ricci curvature tensor on principal bundles over Hermitian manifolds with complex tori as fibers. Thanks to this analysis, we construct explicit examples of Calabi-Yau with torsion Hermitian structures and prove a uniqueness result for them.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Neural network approximations for Calabi-Yau metrics
    Jejjala, Vishnu
    Pena, Damian Kaloni Mayorga
    Mishra, Challenger
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [22] Calabi-Yau connections with torsion on toric bundles
    Grantcharov, D.
    Grantcharov, G.
    Poon, Y. S.
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 78 (01) : 13 - 32
  • [23] Calabi-Yau Manifolds with Torsion and Geometric Flows
    Picard, Sebastien
    [J]. COMPLEX NON-KAHLER GEOMETRY, 2019, 2246 : 57 - 120
  • [24] BCOV TORSION AND DEGENERATIONS OF CALABI-YAU MANIFOLDS
    Xia, Wei
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (01) : 351 - 369
  • [25] Neural network approximations for Calabi-Yau metrics
    Vishnu Jejjala
    Damián Kaloni Mayorga Peña
    Challenger Mishra
    [J]. Journal of High Energy Physics, 2022
  • [26] DIAMETER BOUNDS FOR DEGENERATING CALABI-YAU METRICS
    Li, Yang
    Tosatti, Valentino
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (02) : 603 - 614
  • [27] Calabi-Yau metrics for quotients and complete intersections
    Braun, Volker
    Brelidze, Tamaz
    Douglas, Michael R.
    Ovrut, Burt A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05):
  • [28] Invariant forms, associated bundles and Calabi-Yau metrics
    Conti, Diego
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (12) : 2483 - 2508
  • [29] A new equation on the Calabi-Yau metrics in low dimensions
    Egorov D.V.
    [J]. Siberian Mathematical Journal, 2011, 52 (4) : 651 - 654
  • [30] Numerical Calabi-Yau metrics from holomorphic networks
    Douglas, Michael R.
    Lakshminarasimhan, Subramanian
    Qi, Yidi
    [J]. MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 223 - +