On the Curvature of the Bismut Connection: Bismut-Yamabe Problem and Calabi-Yau with Torsion Metrics

被引:3
|
作者
Barbaro, Giuseppe [1 ]
机构
[1] Univ Sapienza, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Gauduchon-Yamabe problem; Calabi-Yau with torsion structures; Bismut scalar curvature; Bismut Ricci curvature; CHERN SCALAR CURVATURE; MANIFOLDS; THEOREMS;
D O I
10.1007/s12220-023-01203-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two natural problems concerning the scalar and the Ricci curvatures of the Bismut connection. Firstly, we study an analog of the Yamabe problem for Hermitian manifolds related to the Bismut scalar curvature, proving that, fixed a conformal Hermitian structure on a compact complex manifold, there exists a metric with constant Bismut scalar curvature in that class when the expected constant scalar curvature is non-negative. A similar result is given in the general case of Gauduchon connections. We then study an Einstein-type condition for the Bismut Ricci curvature tensor on principal bundles over Hermitian manifolds with complex tori as fibers. Thanks to this analysis, we construct explicit examples of Calabi-Yau with torsion Hermitian structures and prove a uniqueness result for them.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] On the Curvature of the Bismut Connection: Bismut–Yamabe Problem and Calabi–Yau with Torsion Metrics
    Giuseppe Barbaro
    [J]. The Journal of Geometric Analysis, 2023, 33
  • [2] Machine learned Calabi-Yau metrics and curvature
    Berglund, Per
    Butbaia, Giorgi
    Hubsch, Tristan
    Jejjala, Vishnu
    Pena, Damian Mayorga
    Mishra, Challenger
    Tan, Justin
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 27 (04) : 1107 - 1158
  • [3] Numerical metrics, curvature expansions and Calabi-Yau manifolds
    Wei Cui
    James Gray
    [J]. Journal of High Energy Physics, 2020
  • [4] Numerical metrics, curvature expansions and Calabi-Yau manifolds
    Cui, Wei
    Gray, James
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (05)
  • [5] Generalized Hodge metrics and BCOV torsion on Calabi-Yau moduli
    Fang, H
    Lu, ZQ
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 588 : 49 - 69
  • [6] DEGENERATIONS OF CALABI-YAU METRICS
    Tosatti, Valentino
    [J]. GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 495 - 505
  • [7] Numerical Calabi-Yau metrics
    Douglas, Michael R.
    Karp, Robert L.
    Lukic, Sergio
    Reinbacher, Rene
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [8] Complete Calabi-Yau metrics from smoothing Calabi-Yau complete intersections
    Firester, Benjy J.
    [J]. GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [9] ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS
    Fang, Hao
    Lu, Zhiqin
    Yoshikawa, Ken-Ichi
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 80 (02) : 175 - 259
  • [10] Energy functionals for Calabi-Yau metrics
    Headrick, M.
    Nassar, A.
    [J]. 6TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS6), 2013, 462