In the Direction of an Artificial Intelligence-Enabled Monitoring Platform for Concrete Structures

被引:1
|
作者
Cosoli, Gloria [1 ]
Calcagni, Maria Teresa [1 ]
Salerno, Giovanni [1 ]
Mancini, Adriano [2 ]
Narang, Gagan [2 ]
Galdelli, Alessandro [2 ]
Mobili, Alessandra [3 ]
Tittarelli, Francesca [3 ,4 ]
Revel, Gian Marco [1 ]
机构
[1] Univ Politecn Marche, Dept Ind Engn & Math Sci, I-60131 Ancona, Italy
[2] Univ Politecn Marche, Dept Informat Engn, I-60131 Ancona, Italy
[3] Univ Politecn Marche, Dept Sci & Engn Matter Environm & Urban Planning, I-60131 Ancona, Italy
[4] Natl Res Council ISAC CNR, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy
关键词
self-sensing concrete; monitoring; electrical impedance; monitoring platform; Artificial Intelligence; vision systems; crack detection; early warning;
D O I
10.3390/s24020572
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In a seismic context, it is fundamental to deploy distributed sensor networks for Structural Health Monitoring (SHM). Indeed, regularly gathering data from a structure/infrastructure gives insight on the structural health status, and Artificial Intelligence (AI) technologies can help in exploiting this information to generate early warnings useful for decision-making purposes. With a perspective of developing a remote monitoring platform for the built environment in a seismic context, the authors tested self-sensing concrete beams in loading tests, focusing on the measured electrical impedance. The formed cracks were objectively assessed through a vision-based system. Also, a comparative analysis of AI-based and statistical prediction methods, including Prophet, ARIMA, and SARIMAX, was conducted for predicting electrical impedance. Results show that the real part of electrical impedance is highly correlated with the applied load (Pearson's correlation coefficient > 0.9); hence, the piezoresistive ability of the manufactured specimens has been confirmed. Concerning prediction methods, the superiority of the Prophet model over statistical techniques was demonstrated (Mean Absolute Percentage Error, MAPE < 1.00%). Thus, the exploitation of electrical impedance sensors, vision-based systems, and AI technologies can be significant to enhance SHM and maintenance needs prediction in the built environment.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] STRUCTURAL, FUNCTIONAL, AND HEMODYNAMIC CORRELATES OF ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAM IN AS
    Ito, Saki
    Shelly, Michal
    Attia, Zachi Itzhak
    Lee, Eunjung
    Friedman, Paul A.
    Nkomo, Vuyisile Tlhopane
    Michelena, Hector I.
    Noseworthy, Peter
    Lopez-Jimenez, Francisco
    Oh, Jae K.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 1942 - 1942
  • [32] Directed Energy Deposition via Artificial Intelligence-Enabled Approaches
    Chadha, Utkarsh
    Selvaraj, Senthil Kumaran
    Lamsal, Aakrit Sharma
    Maddini, Yashwanth
    Ravinuthala, Abhishek Krishna
    Choudhary, Bhawana
    Mishra, Anirudh
    Padala, Deepesh
    Shashank, M.
    Lahoti, Vedang
    Adefris, Addisalem
    Dhanalakshmi, S.
    COMPLEXITY, 2022, 2022
  • [33] The regulatory environment for artificial intelligence-enabled devices in the United States
    Liang, Nathan L.
    Chung, Timothy K.
    Vorp, David A.
    SEMINARS IN VASCULAR SURGERY, 2023, 36 (03) : 435 - 439
  • [34] Preparing Future Technical Editors for an Artificial Intelligence-enabled Workplace
    Mallette, Jennifer C.
    JOURNAL OF BUSINESS AND TECHNICAL COMMUNICATION, 2024, 38 (03) : 289 - 302
  • [35] Commentary on: BreastGAN: Artificial Intelligence-Enabled Breast Augmentation Simulation
    Unger, Jacob G.
    Goltz, Dayna
    AESTHETIC SURGERY JOURNAL OPEN FORUM, 2022, 4
  • [36] Artificial Intelligence-Enabled Chatbots in Mental Health: A Systematic Review
    Omarov, Batyrkhan
    Narynov, Sergazi
    Zhumanov, Zhandos
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 5105 - 5122
  • [37] An artificial intelligence-enabled consumables tracking system for medical laboratories
    Sritart, Hiranya
    Tosranon, Prasong
    Taertulakarn, Somchat
    Journal of Intelligent Systems, 2024, 33 (01)
  • [38] Artificial Intelligence-enabled ECG: Physiologic and Pathophysiologic Insights and Implications
    Kashou, Anthony H.
    Adedinsewo, Demilade A.
    Siontis, Konstantinos C.
    Noseworthy, Peter A.
    COMPREHENSIVE PHYSIOLOGY, 2022, 12 (03) : 3417 - 3424
  • [39] Artificial Intelligence-Enabled ECG: a Modern Lens on an Old Technology
    Kashou, Anthony H.
    May, Adam M.
    Noseworthy, Peter A.
    CURRENT CARDIOLOGY REPORTS, 2020, 22 (08)
  • [40] Artificial intelligence-enabled ophthalmoscopy for papilledema: a systematic review protocol
    Rambabu, Lekaashree
    Smith, Brandon G.
    Tumpa, Stasa
    Kohler, Katharina
    Kolias, Angelos G.
    Hutchinson, Peter J.
    Bashford, Tom
    Consortium, Eyevu
    INTERNATIONAL JOURNAL OF SURGERY PROTOCOLS, 2024, 28 (01): : 27 - 30