Capturing the Polarization Response of Solvated Proteins under Constant Electric Fields in Molecular Dynamics Simulations

被引:1
|
作者
Chakraborty, Anustup [1 ]
Venkatramani, Ravindra [1 ]
机构
[1] Tata Inst Fundamental Res, Dept Chem Sci, Dr Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
关键词
electric field; protein unfolding; non-equilibrium response; ubiquitin; dipole moment; INSULIN CHAIN-B; FORCE-FIELD; ROTATIONAL DIFFUSION; WATER MODEL; UBIQUITIN; ORIENTATION; ANISOTROPY; VISCOSITY; HYDRATION;
D O I
10.1002/cphc.202200646
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We capture and compare the polarization response of a solvated globular protein ubiquitin to static electric (E-fields) using atomistic molecular dynamics simulations. We collectively follow E-field induced changes, electrical and structural, occurring across multiple trajectories using the magnitude of the protein dipole vector (P-p). E-fields antiparallel to P-p induce faster structural changes and more facile protein unfolding relative to parallel fields of the same strength. While weak E-fields (0.1-0.5 V/nm) do not unfold ubiquitin and produce a reversible polarization, strong E-fields (1-2 V/nm) unfold the protein through a pathway wherein the helix:beta-strand interactions rupture before those for the beta 1-beta 5 clamp. Independent of E-field direction, high E-field induced structural changes are also reversible if the field is switched off before P-p exceeds 2 times its equilibrium value. We critically examine the dependence of water properties, protein rotational diffusion and E-field induced protein unfolding pathways on the thermostat/barostat parameters used in our simulations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane
    Lin, Yang-Shan
    Lin, Jung-Hsin
    Chang, Chien-Cheng
    [J]. BIOPHYSICAL JOURNAL, 2010, 98 (06) : 1009 - 1017
  • [22] Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm
    Procacci, P
    Marchi, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (08): : 3003 - 3012
  • [23] First principles and classical molecular dynamics simulations of solvated benzene
    Allesch, Markus
    Lightstone, Felice C.
    Schwegler, Eric
    Galli, Giulia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (01):
  • [24] Molecular dynamics simulations of ion irradiation of a surface under an electric field
    Parviainen, S.
    Djurabekova, F.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2014, 339 : 63 - 66
  • [25] Force fields and molecular dynamics simulations
    Gonzalez, M. A.
    [J]. NEUTRONS ET SIMULATIONS, JDN 18, 2010, : 169 - 200
  • [26] Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations
    Khalili-Araghi, Fatemeh
    Ziervogel, Brigitte
    Gumbart, James C.
    Roux, Benoit
    [J]. JOURNAL OF GENERAL PHYSIOLOGY, 2013, 142 (04): : 465 - 475
  • [27] Dielectric constant of aqueous solutions of proteins and organic polymers from molecular dynamics simulations
    Liese, Susanne
    Schlaich, Alexander
    Netz, Roland R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (22):
  • [28] A demonstration of the inhomogeneity of the local dielectric response of proteins by molecular dynamics simulations
    Patargias, Georgios N.
    Harris, Sarah A.
    Harding, John H.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (23):
  • [29] Constant-pH molecular dynamics simulations for pKa predictions and conformational dynamics studies of proteins.
    Khandogin, J
    Brooks, CL
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U768 - U768
  • [30] Atomistic modeling of metal surfaces under electric fields: Direct coupling of electric fields to a molecular dynamics algorithm
    Djurabekova, F.
    Parviainen, S.
    Pohjonen, A.
    Nordlund, K.
    [J]. PHYSICAL REVIEW E, 2011, 83 (02)