Capturing the Polarization Response of Solvated Proteins under Constant Electric Fields in Molecular Dynamics Simulations

被引:1
|
作者
Chakraborty, Anustup [1 ]
Venkatramani, Ravindra [1 ]
机构
[1] Tata Inst Fundamental Res, Dept Chem Sci, Dr Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
关键词
electric field; protein unfolding; non-equilibrium response; ubiquitin; dipole moment; INSULIN CHAIN-B; FORCE-FIELD; ROTATIONAL DIFFUSION; WATER MODEL; UBIQUITIN; ORIENTATION; ANISOTROPY; VISCOSITY; HYDRATION;
D O I
10.1002/cphc.202200646
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We capture and compare the polarization response of a solvated globular protein ubiquitin to static electric (E-fields) using atomistic molecular dynamics simulations. We collectively follow E-field induced changes, electrical and structural, occurring across multiple trajectories using the magnitude of the protein dipole vector (P-p). E-fields antiparallel to P-p induce faster structural changes and more facile protein unfolding relative to parallel fields of the same strength. While weak E-fields (0.1-0.5 V/nm) do not unfold ubiquitin and produce a reversible polarization, strong E-fields (1-2 V/nm) unfold the protein through a pathway wherein the helix:beta-strand interactions rupture before those for the beta 1-beta 5 clamp. Independent of E-field direction, high E-field induced structural changes are also reversible if the field is switched off before P-p exceeds 2 times its equilibrium value. We critically examine the dependence of water properties, protein rotational diffusion and E-field induced protein unfolding pathways on the thermostat/barostat parameters used in our simulations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Molecular dynamics simulations of nanoscale metal tips under electric fields
    Parviainen, S.
    Djurabekova, F.
    Pohjonen, A.
    Nordlund, K.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (14): : 1748 - 1751
  • [2] Tubulin's response to external electric fields by molecular dynamics simulations
    Timmons, Joshua J.
    Preto, Jordane
    Tuszynski, Jack A.
    Wong, Eric T.
    [J]. PLOS ONE, 2018, 13 (09):
  • [3] Constant pH molecular dynamics simulations of membrane proteins
    Dwadasi, Balarama Sridhar
    Zhekova, Hristina R.
    Noskov, Sergei Y.
    Salahub, Dennis R.
    Tieleman, Peter D.
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (03) : 424A - 424A
  • [4] Molecular Dynamics Simulations of Ice Nucleation by Electric Fields
    Yan, J. Y.
    Patey, G. N.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (26): : 7057 - 7064
  • [5] Charge Transfer and Polarization in Solvated Proteins from Ab Initio Molecular Dynamics
    Ufimtsev, Ivan S.
    Luehr, Nathan
    Martinez, Todd J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (14): : 1789 - 1793
  • [6] Electronic processes in molecular dynamics simulations of nanoscale metal tips under electric fields
    Parviainen, S.
    Djurabekova, F.
    Timko, H.
    Nordlund, K.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (07) : 2075 - 2079
  • [7] Constant-pressure molecular dynamics techniques applied to complex molecular systems and solvated proteins
    Paci, E
    Marchi, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (10): : 4314 - 4322
  • [8] Polarization of acetonitrile under thermal fields via non-equilibrium molecular dynamics simulations
    Gittus, Oliver R.
    Albella, Pablo
    Bresme, Fernando
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (20):
  • [9] Molecular dynamics simulations of solvated yeast tRNAAsp
    Auffinger, P
    Louise-May, S
    Westhof, E
    [J]. BIOPHYSICAL JOURNAL, 1999, 76 (01) : 50 - 64
  • [10] Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics
    Nandi, Prithwish K.
    Futera, Zdenek
    English, Niall J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (20):