TRINOMIALS, TORUS KNOTS AND CHAINS

被引:3
|
作者
Barrera, Waldemar [1 ]
Magana, Julio C. [1 ]
Navarrete, Juan Pablo [1 ]
机构
[1] Univ Autonoma Yucatan, Fac Matemat, Anillo Perifer Norte Tablaje Cat 13615, Merida, Yucatan, Mexico
关键词
Trinomial; torus knot; complex projective plane; complex line; ROOTS; STABILITY;
D O I
10.1090/tran/8834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n > m be fixed positive coprime integers. For v > 0, we give a topological description of the set lambda(v), consisting of points [x : y : z] in the complex projective plane for which the equation x zeta(n) + y zeta(m) + z = 0 has a root with norm v. It is shown that the set 2(v) = P-C(2) \ lambda(v) has n+ 1 components. Moreover, the topological type of each component is given. The same results hold for lambda and omega = P-C(2) \ lambda, where lambda denotes the set obtained as the union of all the complex tangent lines to the 3-sphere at the points of the torus knot, that is, the knot obtained by intersecting {[x : y : 1] is an element of P-C(2) : |x|2 + |y|2 = 1} and the complex curve {[x : y : 1] is an element of P-C(2) : y(m) = x(n)}. Finally, we use the linking number of a distinguished family of circles and the torus knot to give a numerical invariant which determines the components of 2 in a unique way.
引用
收藏
页码:2963 / 3004
页数:42
相关论文
共 50 条
  • [41] The condensate from torus knots
    Gorsky, A.
    Milekhin, A.
    Sopenko, N.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):
  • [42] ON CHEBYSHEV POLYNOMIALS AND TORUS KNOTS
    Gavrilik, A. M.
    Pavlyuk, A. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2010, 55 (01): : 129 - 134
  • [43] Torus Knots and the Topological Vertex
    Hans Jockers
    Albrecht Klemm
    Masoud Soroush
    Letters in Mathematical Physics, 2014, 104 : 953 - 989
  • [44] The palette numbers of torus knots
    Hayashi, Taiki
    Nakamura, Takuji
    Nakanishi, Yasutaka
    Satoh, Shin
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (10)
  • [45] Torus Knots and Mirror Symmetry
    Brini, Andrea
    Eynard, Bertrand
    Marino, Marcos
    ANNALES HENRI POINCARE, 2012, 13 (08): : 1873 - 1910
  • [46] Gordian adjacency for torus knots
    Feller, Peter
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (02): : 769 - 793
  • [47] On Composite Twisted Torus Knots
    Morimoto, Kanji
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 499 - 503
  • [48] Knotoids and knots in the thickened torus
    Korablev, Ph. G.
    May, Ya. K.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) : 837 - 844
  • [49] On the Chirality of Torus Curves and Knots
    Georges H. Wagnière
    Journal of Mathematical Chemistry, 2007, 41 : 27 - 31
  • [50] An unknotting sequence for torus knots
    Siwach, V.
    Madeti, P.
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 668 - 674