Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval

被引:5
|
作者
Venaelaeinen, Pinja [1 ]
Luojus, Kari [1 ]
Mortimer, Colleen [2 ]
Lemmetyinen, Juha [1 ]
Pulliainen, Jouni [1 ]
Takala, Matias [1 ]
Moisander, Mikko [1 ]
Zschenderlein, Lina [1 ]
机构
[1] Finnish Meteorol Inst, Arctic Space Ctr, POB 503, Helsinki 00101, Finland
[2] Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada
来源
CRYOSPHERE | 2023年 / 17卷 / 02期
基金
欧盟地平线“2020”;
关键词
MICROWAVE RADIOMETER DATA; CLIMATE; DEPTH; BOREAL;
D O I
10.5194/tc-17-719-2023
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Snow water equivalent (SWE) is a valuable characteristic of snow cover, and it can be estimated using passive spaceborne radiometer measurements. The radiometer-based GlobSnow SWE retrieval methodology, which assimilates weather station snow depth observations into the retrieval, has improved the reliability and accuracy of SWE retrieval when compared to stand-alone radiometer SWE retrievals. To further improve the GlobSnow SWE retrieval methodology, we investigate implementing spatially and temporally varying snow densities into the retrieval procedure. Thus far, the GlobSnow SWE retrieval has used a constant snow density throughout the retrieval despite differing locations, snow depth, or time of winter. This constant snow density is a known source of inaccuracy in the retrieval. Four different versions of spatially and temporally varying snow densities are tested over a 10-year period (2000-2009). These versions use two different spatial interpolation techniques: ordinary Kriging interpolation and inverse distance weighted regression (IDWR). All versions were found to improve the SWE retrieval compared to the baseline GlobSnow v3.0 product, although differences between versions are small. Overall, the best results were obtained by implementing IDWR-interpolated densities into the algorithm, which reduced RMSE (root mean square error) and MAE (mean absolute error) by about 4 mm (8 % improvement) and 5 mm (16 % improvement) when compared to the baseline GlobSnow product, respectively. Furthermore, implementing varying snow densities into the SWE retrieval improves the magnitude and seasonal evolution of the Northern Hemisphere snow mass estimate compared to the baseline product and a product post-processed with varying snow densities.
引用
收藏
页码:719 / 736
页数:18
相关论文
共 50 条
  • [41] Estimating snow water equivalent using observed snow depth data in China
    Yang, Zhiwei
    Chen, Rensheng
    Liu, Zhangwen
    Zhang, Wei
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 51
  • [42] Snow Water Equivalent of Dry Snow Derived From GNSS Carrier Phases
    Henkel, Patrick
    Koch, Franziska
    Appel, Florian
    Bach, Heike
    Prasch, Monika
    Schmid, Lino
    Schweizer, Jurg
    Mauser, Wolfram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3561 - 3572
  • [43] Reconstruction of Snow Water Equivalent and Snow Depth Using Remote Sensing Data
    Hassan, Q. K.
    Sekhon, N. S.
    Magai, R.
    McEachern, P.
    JOURNAL OF ENVIRONMENTAL INFORMATICS, 2012, 20 (02) : 67 - 74
  • [44] Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth
    Kongoli, C
    Grody, NC
    Ferraro, RR
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D24) : 1 - 12
  • [45] Retrieval of Snow Water Equivalent by the Precipitation Imaging Package (PIP) in the Northern Great Lakes
    Tokay, Ali
    Von Lerber, Annakaisa
    Pettersen, Claire
    Kulie, Mark S.
    Moisseev, Dmitri N.
    Wolff, David B.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2022, 39 (01) : 37 - 54
  • [46] Subgrid variability of snow water equivalent at operational snow stations in the western USA
    Meromy, Leah
    Molotch, Noah P.
    Link, Timothy E.
    Fassnacht, Steven R.
    Rice, Robert
    HYDROLOGICAL PROCESSES, 2013, 27 (17) : 2383 - 2400
  • [47] Investigation of Environmental Effects on Coherence Loss in SAR Interferometry for Snow Water Equivalent Retrieval
    Ruiz, Jorge Jorge
    Lemmetyinen, Juha
    Kontu, Anna
    Tarvainen, Riku
    Vehmas, Risto
    Pulliainen, Jouni
    Praks, Jaan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] Estimating the snow water equivalent from snow depth measurements in the Swiss Alps
    Jonas, T.
    Marty, C.
    Magnusson, J.
    JOURNAL OF HYDROLOGY, 2009, 378 (1-2) : 161 - 167
  • [49] Delta-K Interferometric SAR Technique for Snow Water Equivalent (SWE) Retrieval
    Engen, Geir
    Guneriussen, Tore
    Overrein, Oyvind
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (02) : 57 - 61
  • [50] Benchmarking algorithm changes to the Snow CCI plus snow water equivalent product
    Mortimer, C.
    Mudryk, L.
    Derksen, C.
    Brady, M.
    Luojus, K.
    Moisander, M.
    Lemmetyinen, J.
    Takala, M.
    Tanis, C.
    Pulliainen, J.
    REMOTE SENSING OF ENVIRONMENT, 2022, 274