Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval

被引:5
|
作者
Venaelaeinen, Pinja [1 ]
Luojus, Kari [1 ]
Mortimer, Colleen [2 ]
Lemmetyinen, Juha [1 ]
Pulliainen, Jouni [1 ]
Takala, Matias [1 ]
Moisander, Mikko [1 ]
Zschenderlein, Lina [1 ]
机构
[1] Finnish Meteorol Inst, Arctic Space Ctr, POB 503, Helsinki 00101, Finland
[2] Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada
来源
CRYOSPHERE | 2023年 / 17卷 / 02期
基金
欧盟地平线“2020”;
关键词
MICROWAVE RADIOMETER DATA; CLIMATE; DEPTH; BOREAL;
D O I
10.5194/tc-17-719-2023
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Snow water equivalent (SWE) is a valuable characteristic of snow cover, and it can be estimated using passive spaceborne radiometer measurements. The radiometer-based GlobSnow SWE retrieval methodology, which assimilates weather station snow depth observations into the retrieval, has improved the reliability and accuracy of SWE retrieval when compared to stand-alone radiometer SWE retrievals. To further improve the GlobSnow SWE retrieval methodology, we investigate implementing spatially and temporally varying snow densities into the retrieval procedure. Thus far, the GlobSnow SWE retrieval has used a constant snow density throughout the retrieval despite differing locations, snow depth, or time of winter. This constant snow density is a known source of inaccuracy in the retrieval. Four different versions of spatially and temporally varying snow densities are tested over a 10-year period (2000-2009). These versions use two different spatial interpolation techniques: ordinary Kriging interpolation and inverse distance weighted regression (IDWR). All versions were found to improve the SWE retrieval compared to the baseline GlobSnow v3.0 product, although differences between versions are small. Overall, the best results were obtained by implementing IDWR-interpolated densities into the algorithm, which reduced RMSE (root mean square error) and MAE (mean absolute error) by about 4 mm (8 % improvement) and 5 mm (16 % improvement) when compared to the baseline GlobSnow product, respectively. Furthermore, implementing varying snow densities into the SWE retrieval improves the magnitude and seasonal evolution of the Northern Hemisphere snow mass estimate compared to the baseline product and a product post-processed with varying snow densities.
引用
下载
收藏
页码:719 / 736
页数:18
相关论文
共 50 条
  • [1] Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
    Venalainen, Pinja
    Luojus, Kari
    Lemmetyinen, Juha
    Pulliainen, Jouni
    Moisander, Mikko
    Takala, Matias
    CRYOSPHERE, 2021, 15 (06): : 2969 - 2981
  • [2] INVESTIGATING HEMISPHERICAL TRENDS IN SNOW ACCUMULATION USING GLOBSNOW SNOW WATER EQUIVALENT DATA
    Luojus, Kari
    Pulliainen, Jouni
    Takala, Matias
    Lemmetyinen, Juha
    Derksen, Chris
    Metsamaki, Sari
    Bojkov, Bojan
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3772 - 3774
  • [3] RETRIEVAL OF SNOW WATER EQUIVALENT BY GAMMA
    Ma, Yuan
    Li, Hongyi
    Wang, Jian
    Hao, Xiaohua
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4121 - 4124
  • [4] GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset
    Kari Luojus
    Jouni Pulliainen
    Matias Takala
    Juha Lemmetyinen
    Colleen Mortimer
    Chris Derksen
    Lawrence Mudryk
    Mikko Moisander
    Mwaba Hiltunen
    Tuomo Smolander
    Jaakko Ikonen
    Juval Cohen
    Miia Salminen
    Johannes Norberg
    Katriina Veijola
    Pinja Venäläinen
    Scientific Data, 8
  • [5] Validation of GlobSnow-2 snow water equivalent over Eastern Canada
    Larue, Fanny
    Royer, Alain
    De Seve, Danielle
    Langlois, Alexandre
    Roy, Alexandre
    Brucker, Ludovic
    REMOTE SENSING OF ENVIRONMENT, 2017, 194 : 264 - 277
  • [6] GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset
    Luojus, Kari
    Pulliainen, Jouni
    Takala, Matias
    Lemmetyinen, Juha
    Mortimer, Colleen
    Derksen, Chris
    Mudryk, Lawrence
    Moisander, Mikko
    Hiltunen, Mwaba
    Smolander, Tuomo
    Ikonen, Jaakko
    Cohen, Juval
    Salminen, Miia
    Norberg, Johannes
    Veijola, Katriina
    Venalainen, Pinja
    SCIENTIFIC DATA, 2021, 8 (01)
  • [7] HUT snow emission model and its applicability to snow water equivalent retrieval
    Pulliainen, JT
    Grandell, J
    Hallikainen, MT
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03): : 1378 - 1390
  • [8] Retrieval of Snow Depth and Snow Water Equivalent Using Dual Polarization SAR Data
    Patil, Akshay
    Singh, Gulab
    Ruediger, Christoph
    REMOTE SENSING, 2020, 12 (07)
  • [9] Snow depth and snow water equivalent retrieval using X-band PolInSAR data
    Patil, Akshay
    Mohanty, Shradha
    Singh, Gulab
    REMOTE SENSING LETTERS, 2020, 11 (09) : 817 - 826
  • [10] Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model
    Dziubanski, David J.
    Franz, Kristie J.
    JOURNAL OF HYDROLOGY, 2016, 540 : 26 - 39