Effective Halogen-Free Flame-Retardant Additives for Crosslinked Rigid Polyisocyanurate Foams: Comparison of Chemical Structures

被引:2
|
作者
Lenz, Johannes U. [1 ]
Pospiech, Doris [1 ]
Komber, Hartmut [1 ]
Korwitz, Andreas [1 ]
Kobsch, Oliver [1 ]
Paven, Maxime [2 ]
Albach, Rolf W. [2 ]
Guenther, Martin [3 ]
Schartel, Bernhard [3 ]
机构
[1] Leibniz Inst Polymerforsch Dresden eV, Hohe Str 6, D-01069 Dresden, Germany
[2] Covestro Deutschland AG, Kaiser Wilhelm Allee 60, D-51365 Leverkusen, Germany
[3] Bundesanstalt Mat Forsch & Prufung BAM, Unter Den Eichen 87, D-12205 Berlin, Germany
关键词
flame retardant; dibenzo[d; f][1; 3; 2]dioxaphosphepine 6-oxide; BPPO; 9; 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; DOPO; polyisocyanurate; PIR; rigid foam; cone calorimeter; Pudovik reaction; PHOSPHORUS; BEHAVIOR; POLYMER;
D O I
10.3390/ma16010172
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] HALOGEN-FREE FLAME-RETARDANT BASED ON PHOSPHORUS-COMPOUNDS
    STAENDEKE, H
    SCHARF, DJ
    KUNSTSTOFFE-GERMAN PLASTICS, 1989, 79 (11): : 1200 - 1204
  • [22] The technology of halogen-free flame retardant additives for polymeric systems
    Davis, J
    ENGINEERING PLASTICS, 1996, 9 (05): : 403 - 419
  • [23] A WAY TO HALOGEN-FREE, FLAME-RETARDANT LAMINATES FOR ELECTRONIC APPLICATIONS
    VONGENTZKOW, W
    HUBER, J
    ROGLER, W
    WILHELM, D
    MAKROMOLEKULARE CHEMIE-MACROMOLECULAR SYMPOSIA, 1993, 74 : 173 - 178
  • [24] Cellular Structure of Halogen-Free Flame Retardant Foams Based on LDPE
    Roman-Lorza, S.
    Rodriguez-Perez, M. A.
    de Saja Saez, J. A.
    CELLULAR POLYMERS, 2009, 28 (04) : 249 - 268
  • [25] An innovative halogen-free flame-retardant thermosetting carbon fiber laminate
    Wu C.-M.
    Huang L.-L.
    Lee S.-K.
    Lee, Shin-Ku (sklee1015@gmail.com), 1600, M Y U Scientific Publishing Division (28): : 477 - 483
  • [26] Routes to halogen-free flame-retardant polypropylene wood plastic composites
    Yin, Huajie
    Sypaseuth, Fanni D.
    Schubert, Martina
    Schoch, Rebecca
    Bastian, Martin
    Schartel, Bernhard
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2019, 30 (01) : 187 - 202
  • [27] An Innovative Halogen-Free Flame-Retardant Thermosetting Carbon Fiber Laminate
    Wu, Chun-Mu
    Huang, Lin-Lin
    Lee, Shin-Ku
    SENSORS AND MATERIALS, 2016, 28 (05) : 477 - 483
  • [28] Development of low-smoke halogen-free flame-retardant cable
    Shimizu, Makoto
    Niikura, Koji
    Kitayama, Yoshinobu
    Maeda, Kazuyuki
    Kobayashi, Yutaka
    SEI Technical Review, 1998, (45): : 28 - 34
  • [29] Poly(ethyl methacrylate) Composite Coatings Containing Halogen-Free Inorganic Additives with Flame-Retardant Properties
    Liu, Xinqian
    Veldhuis, Stephen
    Mathews, Ritch
    Zhitomirsky, Igor
    JOURNAL OF COMPOSITES SCIENCE, 2022, 6 (04):
  • [30] Development of halogen-free flame-retardant thermoplastic elastomer polymer blend
    Pal, K
    Rastogi, JN
    JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 94 (02) : 407 - 415