Language-Independent Text Tokenization Using Unsupervised Deep Learning

被引:1
|
作者
Mahmoud, Hanan A. Hosni [1 ]
Hafez, Alaaeldin M. [2 ]
Alabdulkreem, Eatedal [1 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh, Saudi Arabia
来源
关键词
Text classification; language-independent tokenization; sub word tokenization; RECOGNITION; ALGORITHMS; MODEL;
D O I
10.32604/iasc.2023.026235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Languages???independent text tokenization can aid in classification of languages with few sources. There is a global research effort to generate text classification for any language. Human text classification is a slow procedure. Consequently, the text summary generation of different languages, using machine text classification, has been considered in recent years. There is no research on the machine text classification for many languages such as Czech, Rome, Urdu. This research proposes a cross-language text tokenization model using a Transformer technique. The proposed Transformer employs an encoder that has ten layers with self-attention encoding and a feedforward sublayer. This model improves the efficiency of text classification by providing a draft text classification for a number of documents. We also propose a novel Sub-Word tokenization model with frequent vocabulary usage in the documents. The Sub-Word Byte-Pair Tokenization technique (SBPT) utilizes the sharing of the vocabulary of one sentence with other sentences. The Sub-Word tokenization model enhances the performance of other Sub-Word tokenization models such pair encoding model by +10% using precision metric.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 50 条
  • [21] A variant of n-gram based language-independent text categorization
    Graovac, Jelena
    [J]. INTELLIGENT DATA ANALYSIS, 2014, 18 (04) : 677 - 695
  • [22] Language-Independent Text-Line Extraction Algorithm for Handwritten Documents
    Ryu, Jewoong
    Koo, Hyung Il
    Cho, Nam Ik
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (09) : 1115 - 1119
  • [23] A Framework for Language-Independent Analysis and Prosodic Feature Annotation of Text Corpora
    Spiliotopoulos, Dimitris
    Petasis, Georgios
    Kouolpetroglou, Georgios
    [J]. TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2008, 5246 : 517 - 524
  • [24] LANGUAGE-INDEPENDENT DYNAMIC PSEUDOSTRUCTURES
    TONKIN, BW
    [J]. DR DOBBS JOURNAL, 1989, 14 (05): : 39 - &
  • [25] In defense of language-independent standards
    Meek, B
    [J]. COMMUNICATIONS OF THE ACM, 1996, 39 (01) : 112 - 114
  • [26] An Approach to Building Language-Independent Text-to-Speech Synthesis for Indian Languages
    Prakash, Anusha
    Reddy, M. Ramasubba
    Nagarajan, T.
    Murthy, Hema A.
    [J]. 2014 TWENTIETH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2014,
  • [27] Language-Independent Traceability with Lassig
    Pfeiffer, Rolf-Helge
    Reimann, Jan
    Wasowski, Andrzej
    [J]. MODELLING FOUNDATIONS AND APPLICATIONS, ECMFA 2014, 2014, 8569 : 148 - 163
  • [28] THE LANGUAGE-INDEPENDENT BOTTLENECK FEATURES
    Vesely, Karel
    Karafiat, Martin
    Grezl, Frantisek
    Janda, Milos
    Egorova, Ekaterina
    [J]. 2012 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2012), 2012, : 336 - 341
  • [29] Building a Language-Independent Discourse Parser using Universal Networking Language
    Navaneethakrishnan, Subalalitha Chinnaudayar
    Parthasarathi, Ranjani
    [J]. COMPUTATIONAL INTELLIGENCE, 2015, 31 (04) : 593 - 618
  • [30] WEAVING A LANGUAGE-INDEPENDENT WEB
    VANWYK, CJ
    RAMSEY, N
    [J]. COMMUNICATIONS OF THE ACM, 1989, 32 (09) : 1051 - 1055