Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility

被引:8
|
作者
Cobelli, Claudio [1 ]
Kovatchev, Boris [2 ]
机构
[1] Univ Padua, Padua, Italy
[2] Univ Virginia, Ctr Diabet Technol, Charlottesville, VA USA
来源
JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY | 2023年 / 17卷 / 06期
基金
美国国家卫生研究院;
关键词
diabetes; computer simulation; in silico models; continuous glucose monitoring; insulin pumps; artificial pancreas; closed-loop control; automated insulin delivery; CLOSED-LOOP CONTROL; POSTPRANDIAL GLUCOSE-TURNOVER; INTRAPERITONEAL INSULIN DELIVERY; PANCREAS IN-SILICO; ARTIFICIAL PANCREAS; BLOOD-GLUCOSE; GLYCEMIC CONTROL; MINIMAL-MODEL; BOLUS CALCULATOR; FEEDBACK-CONTROL;
D O I
10.1177/19322968231195081
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Arguably, diabetes mellitus is one of the best quantified human conditions. In the past 50 years, the metabolic monitoring technologies progressed from occasional assessment of average glycemia via HbA(1c), through episodic blood glucose readings, to continuous glucose monitoring (CGM) producing data points every few minutes. The high-temporal resolution of CGM data enabled increasingly intensive treatments, from decision support assisting insulin injection or oral medication, to automated closed-loop control, known as the "artificial pancreas." Throughout this progress, mathematical models and computer simulation of the human metabolic system became indispensable for the technological progress of diabetes treatment, enabling every step, from assessment of insulin sensitivity via the now classic Minimal Model of Glucose Kinetics, to in silico trials replacing animal experiments, to automated insulin delivery algorithms. In this review, we follow these developments, beginning with the Minimal Model, which evolved through the years to become large and comprehensive and trigger a paradigm change in the design of diabetes optimization strategies: in 2007, we introduced a sophisticated model of glucose-insulin dynamics and a computer simulator equipped with a "population" of N = 300 in silico "subjects" with type 1 diabetes. In January 2008, in an unprecedented decision, the Food and Drug Administration (FDA) accepted this simulator as a substitute to animal trials for the pre-clinical testing of insulin treatment strategies. This opened the field for rapid and cost-effective development and pre-clinical testing of new treatment approaches, which continues today. Meanwhile, animal experiments for the purpose of designing new insulin treatment algorithms have been abandoned.
引用
收藏
页码:1493 / 1505
页数:13
相关论文
共 50 条
  • [41] Histological validation of a type 1 diabetes clinical diagnostic model for classification of diabetes
    Carr, A. L. J.
    Perry, D. J.
    Lynam, A. L.
    Chamala, S.
    Flaxman, C. S.
    Sharp, S. A.
    Ferrat, L. A.
    Jones, A. G.
    Beery, M. L.
    Jacobsen, L. M.
    Wasserfall, C. H.
    Campbell-Thompson, M. L.
    Kusmartseva, I.
    Posgai, A.
    Schatz, D. A.
    Atkinson, M. A.
    Brusko, T. M.
    Richardson, S. J.
    Shields, B. M.
    Oram, R. A.
    DIABETIC MEDICINE, 2020, 37 (12) : 2160 - 2168
  • [42] Validation of a diabetes problem solving interview for parents and youths with type 1 diabetes
    Wysocki, T.
    Iannotti, R.
    Weissberg-Benchell, J.
    Laffel, L.
    Hood, K.
    Anderson, B.
    DIABETES, 2006, 55 : A433 - A433
  • [43] Measuring Type 1 diabetes stigma: development and validation of the Type 1 Diabetes Stigma Assessment Scale (DSAS-1)
    Browne, J. L.
    Ventura, A. D.
    Mosely, K.
    Speight, J.
    DIABETIC MEDICINE, 2017, 34 (12) : 1773 - 1782
  • [44] PANDA identifies babies at risk of developing type 1 diabetes
    Greener, M
    MOLECULAR MEDICINE TODAY, 2000, 6 (01): : 3 - 3
  • [45] Developing A Microfluidic System For Type-1 Diabetes Testing
    Viso, M.
    Suthar, B.
    Oliver, D.
    Agarwal, A.
    TISSUE ENGINEERING PART A, 2023, 29 (9-10)
  • [46] Developing a vaccine for type 1 diabetes by targeting coxsackievirus B
    Hyoety, Heikki
    Leon, Francisco
    Knip, Mikael
    EXPERT REVIEW OF VACCINES, 2018, 17 (12) : 1071 - 1083
  • [47] Perinatal risk factors for developing Type 1 diabetes in Denmark
    Svensson, J
    Carstensen, B
    Mortensen, HB
    Borch-Johnsen, K
    DIABETOLOGIA, 2002, 45 : A109 - A109
  • [48] Breastfeeding and the risk of developing type 1 diabetes or islet autoimmunity
    Lund-Blix, N. A.
    Andersen, L. Frost
    Ronningen, K. Skjold
    DIABETOLOGIA, 2013, 56 : S348 - S348
  • [49] Challenges in developing endpoints for type 1 diabetes intervention studies
    Cernea, Simona
    Raz, Itamar
    Herold, Kevan C.
    Hirshberg, Boaz
    Roep, Bart O.
    Schatz, Desmond A.
    Fleming, G. Alexander
    Pozzilli, Paolo
    Little, Randie
    Schloot, Nanette C.
    Leslielo, R. David G.
    Skyler, Jay S.
    Palmer, Jerry P.
    DIABETES-METABOLISM RESEARCH AND REVIEWS, 2009, 25 (08) : 694 - 704
  • [50] LONG-TERM VALIDATION OF THE IMS CORE DIABETES MODEL IN TYPE 1 AND TYPE 2 DIABETES
    Foos, V
    Palmer, J. L.
    Grant, D.
    Lloyd, A.
    Lamotte, M.
    McEwan, P.
    VALUE IN HEALTH, 2012, 15 (07) : A470 - A470