Magnetic field-responsive graphene oxide photonic liquids

被引:1
|
作者
Xu, Yi-Tao [1 ]
Ackroyd, Amanda J. [1 ]
Momeni, Arash [1 ]
Oudah, Mohamed [2 ]
Maclachlan, Mark J. [1 ,2 ,3 ,4 ]
机构
[1] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, 2355 East Mall, Vancouver, BC V6T 1Z1, Canada
[3] Kanazawa Univ, WPI Nano Life Sci Inst, Kanazawa 9201192, Japan
[4] Univ British Columbia, Bioprod Inst, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
STRUCTURAL COLOR; NANOPARTICLES; DISPERSIONS; CRYSTALS; FILMS;
D O I
10.1039/d3nh00412k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modifying the environment around particles (e.g., introducing a secondary phase or external field) can affect the way they interact and assemble, thereby giving control over the physical properties of a dynamic system. Here, graphene oxide (GO) photonic liquids that respond to a magnetic field are demonstrated for the first time. Magnetic nanoparticles are used to provide a continuous magnetizable liquid environment around the GO liquid crystalline domains. In response to a magnetic field, the alignment of magnetic nanoparticles, coupled with the diamagnetic property of GO nanosheets, drives the reorientation and alignment of the nanosheets, enabling switchable photonic properties using a permanent magnet. This phenomenon is anticipated to be extendable to other relevant photonic systems of shape-anisotropic nanoparticles and may open up opportunities for developing GO-based optical materials and devices. Graphene oxide nanosheets within magnetized ferrofluids orient themselves parallel to the direction of a magnetic field, allowing for the formation of photonic liquids with reversible color changes.
引用
收藏
页码:317 / 323
页数:7
相关论文
共 50 条
  • [21] Optimal control and design of magnetic field-responsive smart polymer composites
    Ortigosa, R.
    Martinez-Frutos, J.
    Mora-Corral, C.
    Pedregal, P.
    Periago, F.
    APPLIED MATHEMATICAL MODELLING, 2022, 103 : 141 - 161
  • [22] The materials science of field-responsive fluids
    Phule, PP
    Ginder, JM
    MRS BULLETIN, 1998, 23 (08) : 19 - 21
  • [23] The creep behaviour of a field-responsive fluid
    See, H
    Chen, R
    Keentok, M
    COLLOID AND POLYMER SCIENCE, 2004, 282 (05) : 423 - 428
  • [24] Alternating Magnetic Field-Responsive Hybrid Gelatin Microgels for Controlled Drug Release
    Sung, Baeckkyoung
    Shaffer, Steven
    Sittek, Michal
    Alboslemy, Talib
    Kim, Chanjoong
    Kim, Min-Ho
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (108):
  • [25] Field-responsive superparamagnetic composite nanofibers by electrospinning
    Wang, A
    Singh, H
    Hatton, TA
    Rutledge, GC
    POLYMER, 2004, 45 (16) : 5505 - 5514
  • [26] A magnetically responsive photonic crystal of graphene oxide nanosheets
    Ogawa, Daisuke
    Nishimura, Tomoki
    Nishina, Yuta
    Sano, Koki
    NANOSCALE, 2024, 16 (16) : 7908 - 7915
  • [27] Magnetic field-responsive cubosomes containing magnetite and poly(N-isopropylacrylamide)
    Hong, Sung Kyeong
    Wang, Min Hui
    Kim, Jin-Chul
    JOURNAL OF CONTROLLED RELEASE, 2013, 172 (01) : E139 - E139
  • [28] Electric Field-Responsive Mesoporous Suspensions: A Review
    Kwon, Seung Hyuk
    Piao, Shang Hao
    Choi, Hyoung Jin
    NANOMATERIALS, 2015, 5 (04) : 2249 - 2267
  • [29] Piecewise linear model for field-responsive fluids
    Lee, CH
    Reitich, F
    Jolly, MR
    Banks, HT
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (01) : 558 - 560
  • [30] Magnetoelastic pattern formation in field-responsive fluids
    Livera, Pedro O. S.
    Miranda, Jose A.
    PHYSICAL REVIEW FLUIDS, 2020, 5 (01)