Secure Video Offloading in MEC-Enabled IIoT Networks: A Multi-cell Federated Deep Reinforcement Learning Approach

被引:4
|
作者
Zhao, Tantan [1 ]
Li, Fan [1 ]
He, Lijun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Shaanxi Key Lab Deep Space Explorat Intelligent I, Xian 710049, Peoples R China
关键词
Secure video offloading; Industrial Internet of Things; resource orchestration; mobile edge computing; multi-cell federated deep reinforcement learning; INTELLIGENT REFLECTING SURFACE; RESOURCE-ALLOCATION; BIG DATA; EDGE; OPTIMIZATION; PRIVACY; COMMUNICATION; INTERNET;
D O I
10.1109/TII.2023.3280314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wireless video offloading in mobile-edge-computing (MEC)-enabled Industrial Internet of Things imposes a risk of exposing users' private data to eavesdroppers. It is difficult for existing secure video offloading schemes to simultaneously guarantee security, reduce latency and energy consumption in privacy-sensitive multi-cell scenarios where users are unwilling to offload data to other cells. In this paper, a secure video offloading scheme based on multi-cell federated deep reinforcement learning (DRL) is proposed to facilitate a secure, real-time and efficient MEC network by efficient orchestration of limited resources. We formulate a collaborative optimization problem of video frame resolution and resources to minimize latency and energy consumption while maximizing the security rate subject to analytic accuracy and limited resources. To solve the formulated NP-hard problem, a multi-cell federated DRL algorithm based on the frameworks of multi-cell horizontal federated learning (FL) and hierarchical reward function-based twin delayed deep deterministic policy gradient (TD3) is proposed. First of all, hierarchical reward function-based TD3 is employed to solve the collaborative optimization NP-hard problem formulated for each single cell, where the optimal solution can be efficiently approached by the agent under the guidance of the innovatively designed hierarchical reward function. Then, multi-cell horizontal FL is applied on TD3 to obtain a model with higher model quality by averagely aggregating multiple individual TD3 models. Simulation results reveal that the proposed algorithm outperforms comparison algorithms in terms of utility, cost, latency, energy consumption and security rate.
引用
收藏
页码:1618 / 1629
页数:12
相关论文
共 50 条
  • [1] Secure Video Offloading in Multi-UAV-Enabled MEC Networks: A Deep Reinforcement Learning Approach
    Zhao, Tantan
    Li, Fan
    He, Lijun
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 2950 - 2963
  • [2] DRL-Based Secure Video Offloading in MEC-Enabled IoT Networks
    Zhao, Tantan
    He, Lijun
    Huang, Xinyu
    Li, Fan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19) : 18710 - 18724
  • [3] A Deep Reinforcement Learning Approach for Service Migration in MEC-enabled Vehicular Networks
    Abouaomar, Amine
    Mlika, Zoubeir
    Filali, Abderrahime
    Cherkaoui, Soumaya
    Kobbane, Abdellatif
    [J]. PROCEEDINGS OF THE IEEE 46TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2021), 2021, : 273 - 280
  • [4] Resource Allocation in MEC-enabled Vehicular Networks: A Deep Reinforcement Learning Approach
    Tan, Guoping
    Zhang, Huipeng
    Zhou, Siyuan
    [J]. IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 406 - 411
  • [5] Deep Reinforcement Learning-based Task Offloading and Resource Allocation in MEC-enabled Wireless Networks
    Engidayehu, Seble Birhanu
    Mahboob, Tahira
    Chung, Min Young
    [J]. 2022 27TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS (APCC 2022): CREATING INNOVATIVE COMMUNICATION TECHNOLOGIES FOR POST-PANDEMIC ERA, 2022, : 226 - 230
  • [6] Federated Offloading Scheme to Minimize Latency in MEC-enabled Vehicular Networks
    Wang, Hansong
    Li, Xi
    Ji, Hong
    Zhang, Heli
    [J]. 2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [7] Trusted Collaboration for MEC-Enabled VR Video Streaming: A Multi-Agent Reinforcement Learning Approach
    Xu, Yueqiang
    Zhang, Heli
    Li, Xi
    Yu, F. Richard
    Leung, Victor C. M.
    Ji, Hong
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (09) : 12167 - 12180
  • [8] Computation Offloading and Resource Allocation in MEC-Enabled Integrated Aerial-Terrestrial Vehicular Networks: A Reinforcement Learning Approach
    Waqar, Noor
    Hassan, Syed Ali
    Mahmood, Aamir
    Dev, Kapal
    Dinh-Thuan Do
    Gidlund, Mikael
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 21478 - 21491
  • [9] Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks
    Zhang, Rongqi
    Pan, Chunyun
    Wang, Yafei
    Yao, Yuanyuan
    Li, Xuehua
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (06) : 446 - 457
  • [10] Dynamic Service Function Chain Orchestration for NFV/MEC-Enabled IoT Networks: A Deep Reinforcement Learning Approach
    Liu, Yicen
    Lu, Hao
    Li, Xi
    Zhang, Yang
    Xi, Leiping
    Zhao, Donghao
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (09) : 7450 - 7465