A novel control design for high-speed Atomic Force Microscopy

被引:0
|
作者
Gorugantu, Ram Sai [1 ]
Salapaka, Srinivasa M. [2 ]
机构
[1] ASML, Wilton, CT 06897 USA
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
关键词
RESOLUTION; CONTACT; SURFACE;
D O I
10.23919/ACC55779.2023.10156581
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel transform-based imaging mode for Atomic Force Microscopy (AFM), where the cantilever oscillations are made to track the output of a mock-model system. The states of the resulting tracking error dynamics is appended by another set of suitably designed states, which enable a specific time-varying coordinate transformation, which in turn results in dynamic models that are very conducive to linear control synthesis design methods. The proposed imaging mode enables higher throughput in AFM imaging without the need for significantly high resonant frequency AFM cantilever probes. This method overcomes the fundamental limitation of nonlinear input-output relationship in Amplitude Modulation AFM (AM-AFM) imaging mode by applying an appropriately chosen real-time transform on the output signal. In combination with model-based reference generation, the proposed real-time transform yields linear dynamical input-output characteristics. Simulations on detailed AFM models with H-infinity optimal control designs show the efficacy of the proposed imaging mode for feature bandwidths higher than 5% of the cantilever resonant frequency.
引用
收藏
页码:692 / 697
页数:6
相关论文
共 50 条
  • [21] On recent developments for high-speed atomic force microscopy
    Schitter, G
    Fantner, GE
    Kindt, JH
    Thurner, PJ
    Hansma, PK
    2005 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1 AND 2, 2005, : 261 - 264
  • [22] High-Speed Atomic Force Microscopy of SMC Proteins
    Ryu, Je-Kyung
    Katan, Allard
    Minamino, Masashi
    Bouchoux, Celine
    Bisht, Shveta
    Eeftens, Jorine
    Hearing, Christian
    Uhlmann, Frank
    Dekker, Cees
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 564A - 564A
  • [23] Automated parallel high-speed atomic force microscopy
    Minne, SC
    Yaralioglu, G
    Manalis, SR
    Adams, JD
    Zesch, J
    Atalar, A
    Quate, CF
    APPLIED PHYSICS LETTERS, 1998, 72 (18) : 2340 - 2342
  • [24] A mechanical microscope: High-speed atomic force microscopy
    Humphris, ADL
    Miles, MJ
    Hobbs, JK
    APPLIED PHYSICS LETTERS, 2005, 86 (03) : 1 - 3
  • [25] High-speed atomic force microscopy coming of age
    Ando, Toshio
    NANOTECHNOLOGY, 2012, 23 (06)
  • [26] Applied physics - High-speed atomic force microscopy
    Hansma, Paul K.
    Schitter, Georg
    Fantner, Georg E.
    Prater, Craig
    SCIENCE, 2006, 314 (5799) : 601 - 602
  • [27] High-speed atomic force microscopy by modern control and mechatronic system integration
    Steininger, J.
    Kuiper, S.
    Ito, S.
    Schitter, G.
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2012, 129 (01): : 28 - 33
  • [28] High-speed atomic force microscopy simultaneous to advanced optical microscopy
    Hermsdoerfer, A.
    Stamov, D. R.
    Franz, C. M.
    Madl, J.
    Roemer, W.
    Jaehnke, T.
    Haschke, H.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S78 - S78
  • [29] Design of a XYZ scanner for home-made high-speed atomic force microscopy
    Kunhai Cai
    Xianbin He
    Yanling Tian
    Xianping Liu
    Dawei Zhang
    Bijan Shirinzadeh
    Microsystem Technologies, 2018, 24 : 3123 - 3132
  • [30] Design of an Inertially Counterbalanced Z-Nanopositioner for High-Speed Atomic Force Microscopy
    Yong, Y. K.
    Mohemani, S. O. R.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2013, 12 (02) : 137 - 145