In this paper, we describe the so-called homogeneous involution on finite-dimensional graded-division algebra over an algebraically closed field. We also compute their graded polynomial identities with involution. As pointed out by Fonseca and Mello, a homogeneous involution naturally appears when dealing with graded polynomial identities and a compatible involution.
机构:
Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, CNRS, 7 Rue Rene,Strasbourg, F-67000 Descartes, FranceUniv Strasbourg, Inst Rech Math Avancee, UMR 7501, CNRS, 7 Rue Rene,Strasbourg, F-67000 Descartes, France
Dotsenko, Vladimir
Ismailov, Nurlan
论文数: 0引用数: 0
h-index: 0
机构:
Astana IT Univ, Astana 010000, KazakhstanUniv Strasbourg, Inst Rech Math Avancee, UMR 7501, CNRS, 7 Rue Rene,Strasbourg, F-67000 Descartes, France
Ismailov, Nurlan
Umirbaev, Ualbai
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Al Farabi Kazakh Natl Univ, Dept Math, Alma Ata 050040, Kazakhstan
Inst Math & Math Modeling, Alma Ata 050010, KazakhstanUniv Strasbourg, Inst Rech Math Avancee, UMR 7501, CNRS, 7 Rue Rene,Strasbourg, F-67000 Descartes, France
机构:
Centre of Mathematics, University of Rousse A. Kanchev, 7017 RousseCentre of Mathematics, University of Rousse A. Kanchev, 7017 Rousse
Rashkova T.
Drensky V.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Acad. G. Bonchev Str.Centre of Mathematics, University of Rousse A. Kanchev, 7017 Rousse