Functional additive expectile regression in the reproducing kernel Hilbert space

被引:0
|
作者
Liu, Yuzi [1 ]
Peng, Ling [1 ]
Liu, Qing [1 ]
Lian, Heng [2 ]
Liu, Xiaohui [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Key Lab Data Sci Finance & Econ, Nanchang 330013, Jiangxi, Peoples R China
[2] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
Convergence rate; Functional additive expectile regression; Reproducing kernel Hilbert space; Upper bound; QUANTILE REGRESSION; LINEAR-REGRESSION; PREDICTION;
D O I
10.1016/j.jmva.2023.105214
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the literature, the functional additive regression model has received much attention. Most current studies, however, only estimate the mean function, which may not ade-quately capture the heteroscedasticity and/or asymmetries of the model errors. In light of this, we extend functional additive regression models to their expectile counterparts and obtain an upper bound on the convergence rate of its regularized estimator under mild conditions. To demonstrate its finite sample performance, a few simulation experiments and a real data example are provided. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial
    Nosedal-Sanchez, Alvaro
    Storlie, Curtis B.
    Lee, Thomas C. M.
    Christensen, Ronald
    [J]. AMERICAN STATISTICIAN, 2012, 66 (01): : 50 - 60
  • [42] Rainfall-runoff modeling through regression in the reproducing kernel Hilbert space algorithm
    Safari, Mir Jafar Sadegh
    Arashloo, Shervin Rahimzadeh
    Mehr, Ali Danandeh
    [J]. JOURNAL OF HYDROLOGY, 2020, 587
  • [43] REGULARIZATION METHOD FOR THE GENERALIZED MOMENT PROBLEM IN A FUNCTIONAL REPRODUCING KERNEL HILBERT SPACE
    Liu, Qianru
    Huang, Lei
    Wang, Rui
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (01) : 61 - 80
  • [44] On the Vγ dimension for regression in Reproducing Kernel Hilbert Spaces
    Evgeniou, T
    Pontil, M
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 1999, 1720 : 106 - 117
  • [45] Kernel PLS Regression II: Kernel Partial Least Squares Regression by Projecting Both Independent and Dependent Variables into Reproducing Kernel Hilbert Space
    Pei, Yan
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2031 - 2036
  • [46] Sampling Theory in Abstract Reproducing Kernel Hilbert Space
    Yoon Mi Hong
    Jong Min Kim
    Kil H. Kwon
    [J]. Sampling Theory in Signal and Image Processing, 2007, 6 (1): : 109 - 121
  • [47] Generalized Mahalanobis depth in the reproducing kernel Hilbert space
    Hu, Yonggang
    Wang, Yong
    Wu, Yi
    Li, Qiang
    Hou, Chenping
    [J]. STATISTICAL PAPERS, 2011, 52 (03) : 511 - 522
  • [48] Local Subspace Classifier in Reproducing Kernel Hilbert Space
    Zou, DF
    [J]. ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS, 2000, 1948 : 434 - 441
  • [49] Ensemble forecasts in reproducing kernel Hilbert space family
    Dufee, Benjamin
    Hug, Berenger
    Memin, Etienne
    Tissot, Gilles
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 459
  • [50] On some problems for operators on the reproducing kernel Hilbert space
    Garayev, M. T.
    Guediri, H.
    Gurdal, M.
    Alsahli, G. M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2059 - 2077