A distributed framework for large-scale semantic trajectory similarity join

被引:0
|
作者
Tian, Ruijie [1 ]
Li, Jiajun [1 ]
Zhang, Weishi [1 ,2 ]
Wang, Fei [1 ,2 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Dalian 116026, Liaoning, Peoples R China
[2] Key Lab Intelligent Software, Dalian 116026, Liaoning, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Semantic trajectory; Similarity join; Distributed process; TOP-K; SEARCH;
D O I
10.1007/s11042-023-15236-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The similarity join is a common yet expensive operator for large-scale semantic trajectories analytics. In this paper, we propose DFST, an efficient framework for semantic trajectory similarity join in distributed systems. We devise ITS index and summary index, which consider textual, temporal, and spatial domains, and theoretically demonstrate that they can effectively prune pairs of dissimilar trajectories. Moreover, DFST can support most existing similarity functions to quantify the spatial similarity between semantic trajectories. We have conducted extensive experiments on real world datasets, and experimental results show that DFST achieves a 13.6% improvement of join performance compared to existing semantic trajectory similarity join methods.
引用
收藏
页码:16205 / 16229
页数:25
相关论文
共 50 条
  • [21] Self-join size estimation in large-scale Distributed Data Systems
    Pitoura, Theoni
    Triantafillou, Peter
    2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, : 764 - 773
  • [22] Distributed In-Memory Trajectory Similarity Search and Join on Road Network
    Yuan, Haitao
    Li, Guoliang
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1262 - 1273
  • [23] Distributed safe trajectory optimization for large-scale spacecraft formation reconfiguration
    Chen, Junyu
    Wu, Baolin
    Sun, Zhaobo
    Wang, Danwei
    ACTA ASTRONAUTICA, 2024, 214 : 125 - 136
  • [24] Large-scale distributed semantic augmented reality services - A performance evaluation
    Ruminski, Dariusz
    Walczak, Krzysztof
    GRAPHICAL MODELS, 2020, 107
  • [25] MARVIN: Distributed reasoning over large-scale Semantic Web data
    Oren, Eyal
    Kotoulas, Spyros
    Anadiotis, George
    Siebes, Ronny
    ten Teije, Annette
    van Harmelen, Frank
    JOURNAL OF WEB SEMANTICS, 2009, 7 (04): : 305 - 316
  • [26] Distributed Computational Framework for Large-Scale Stochastic Convex Optimization
    Rostampour, Vahab
    Keviczky, Tamas
    ENERGIES, 2021, 14 (01)
  • [27] A pure distributed framework for large-scale microscopic traffic simulation
    Wu, Ai
    Liu, Xinsong
    Liu, Kejian
    7TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, 2006, : 56 - +
  • [28] A distributed event extraction framework for large-scale unstructured text
    Kan, Zhigang
    Mi, Haibo
    Yang, Sen
    Qiao, Linbo
    Feng, Dawei
    Li, Dongsheng
    2020 IEEE INTERNATIONAL CONFERENCE ON JOINT CLOUD COMPUTING (JCC 2020), 2020, : 102 - 108
  • [29] A Semantic Data-Based Distributed Computing Framework to Accelerate Digital Twin Services for Large-Scale Disasters
    Kwon, Jin-Woo
    Yun, Seong-Jin
    Kim, Won-Tae
    SENSORS, 2022, 22 (18)
  • [30] A large-scale distributed framework for information retrieval in large dynamic search spaces
    Eugene Santos
    Eunice E. Santos
    Hien Nguyen
    Long Pan
    John Korah
    Applied Intelligence, 2011, 35 : 375 - 398