A distributed framework for large-scale semantic trajectory similarity join

被引:0
|
作者
Tian, Ruijie [1 ]
Li, Jiajun [1 ]
Zhang, Weishi [1 ,2 ]
Wang, Fei [1 ,2 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Dalian 116026, Liaoning, Peoples R China
[2] Key Lab Intelligent Software, Dalian 116026, Liaoning, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Semantic trajectory; Similarity join; Distributed process; TOP-K; SEARCH;
D O I
10.1007/s11042-023-15236-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The similarity join is a common yet expensive operator for large-scale semantic trajectories analytics. In this paper, we propose DFST, an efficient framework for semantic trajectory similarity join in distributed systems. We devise ITS index and summary index, which consider textual, temporal, and spatial domains, and theoretically demonstrate that they can effectively prune pairs of dissimilar trajectories. Moreover, DFST can support most existing similarity functions to quantify the spatial similarity between semantic trajectories. We have conducted extensive experiments on real world datasets, and experimental results show that DFST achieves a 13.6% improvement of join performance compared to existing semantic trajectory similarity join methods.
引用
收藏
页码:16205 / 16229
页数:25
相关论文
共 50 条
  • [1] A distributed framework for large-scale semantic trajectory similarity join
    Ruijie Tian
    Jiajun Li
    Weishi Zhang
    Fei Wang
    Multimedia Tools and Applications, 2024, 83 : 16205 - 16229
  • [2] Distributed Entity Resolution Based on Similarity Join for Large-Scale Data Clustering
    Nie, Tiezheng
    Lee, Wang-chien
    Shen, Derong
    Yu, Ge
    Kou, Yue
    WEB-AGE INFORMATION MANAGEMENT, WAIM 2014, 2014, 8485 : 138 - 149
  • [3] Parallel Semantic Trajectory Similarity Join
    Chen, Lisi
    Shang, Shuo
    Jensen, Christian S.
    Yao, Bin
    Kalnis, Panos
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 997 - 1008
  • [4] Pyramid: A General Framework for Distributed Similarity Search on Large-scale Datasets
    Deng, Shiyuan
    Yan, Xiao
    Ng, Kelvin K. W.
    Jiang, Chenyu
    Cheng, James
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1066 - 1071
  • [5] Indoor Uncertain Semantic Trajectory Similarity Join
    Yin, Hong-Bo
    Yang, Dong-Hua
    Zhang, Kai-Qi
    Gao, Hong
    Li, Jian-Zhong
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2024, 39 (06) : 1441 - 1465
  • [6] Advanced Join Strategies for Large-Scale Distributed Computation
    Bruno, Nicolas
    Kwon, YongChul
    Wu, Ming-Chuan
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (13): : 1484 - 1495
  • [7] Large-Scale Similarity Join with Edit-Distance Constraints
    Lin, Chen
    Yu, Haiyang
    Weng, Wei
    He, Xianmang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, PT II, 2014, 8422 : 328 - 342
  • [8] DMFUCP: A Distributed Mining Framework for Universal Companion Patterns on Large-Scale Trajectory Data
    Zhang J.
    Liu S.
    Yang Q.
    Zhou Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (03): : 647 - 660
  • [9] Large-Scale Similarity-Based Join Processing in Multimedia Databases
    Kosch, Harald
    Woelfl, Andreas
    ADVANCES IN MULTIMEDIA MODELING, 2012, 7131 : 418 - 428
  • [10] A FRAMEWORK FOR LARGE SCALE SEMANTIC SIMILARITY SEARCH ON SATELLITE IMAGERY
    Ramasubramanian, Muthukumaran
    Gurung, Iksha
    Thomas, Leo
    Berger, Kathryn
    Ranjan, Soumya
    Mok, Heidi
    Subramanian, Sowmya
    George, Vitor
    Maskey, Manil
    Ramachandran, Rahul
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1404 - 1407