Solvability of Peg Solitaire on Graphs is NP-Complete

被引:0
|
作者
Ito, Kazushi [1 ]
Takenaga, Yasuhiko [1 ]
机构
[1] Univ Electrocommun, Dept Comp & Net Engn, Chofu 1828585, Japan
关键词
key words; peg solitaire; puzzle; NP-completeness; graph;
D O I
10.1587/transinf.2022EDP7092
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Peg solitaire is a single-player board game. The goal of the game is to remove all but one peg from the game board. Peg solitaire on graphs is a peg solitaire played on arbitrary graphs. A graph is called solvable if there exists some vertex s such that it is possible to remove all but one peg starting with sas the initial hole. In this paper, we prove that it is NP-complete to decide if a graph is solvable or not.
引用
收藏
页码:1111 / 1116
页数:6
相关论文
共 50 条
  • [31] Tipover is NP-complete
    Robert A. Hearn
    The Mathematical Intelligencer, 2006, 28 : 10 - 14
  • [32] HIROIMONO is NP-Complete
    Andersson, Daniel
    Fun with Algorithms, Proceedings, 2007, 4475 : 30 - 39
  • [33] TETRAVEX is NP-complete
    Takenaga, Yasuhiko
    Walsh, Toby
    INFORMATION PROCESSING LETTERS, 2006, 99 (05) : 171 - 174
  • [34] Optimal sequentialization of gated data dependence graphs is NP-complete
    Upton, E
    PDPTA'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS 1-4, 2003, : 1767 - 1770
  • [35] THE EDGE HAMILTONIAN PATH PROBLEM IS NP-COMPLETE FOR BIPARTITE GRAPHS
    LAI, TH
    WEI, SS
    INFORMATION PROCESSING LETTERS, 1993, 46 (01) : 21 - 26
  • [36] TipOver is NP-complete
    Hearn, Robert A.
    MATHEMATICAL INTELLIGENCER, 2006, 28 (03): : 10 - 14
  • [37] BoxOff is NP-Complete
    Hayward, Ryan
    Hearn, Robert
    Jamshidian, Mahya
    ADVANCES IN COMPUTER GAMES, ACG 2021, 2022, 13262 : 118 - 127
  • [38] Peg solitaire on graphs - A survey
    De Wiljes, Jan-Hendrik
    Kreh, Martin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [39] PEG SOLITAIRE ON LINE GRAPHS
    Kreh, Martin
    De Wiljes, Jan-Hendrik
    TRANSACTIONS ON COMBINATORICS, 2024, 13 (03) : 257 - 277
  • [40] Reversible peg solitaire on graphs
    Engbers, John
    Stocker, Christopher
    DISCRETE MATHEMATICS, 2015, 338 (11) : 2014 - 2019