Theoretical Insights into Amido Group-Mediated Enhancement of CO2 Hydrogenation to Methanol on Cobalt Catalysts

被引:0
|
作者
Lei, Han [1 ]
Zhao, Wanghui [2 ]
Zhang, Wenhua [2 ,3 ]
Yang, Jinlong [1 ]
机构
[1] Univ Sci & Technol China, Key Lab Precis & Intelligent Chem, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Ghent, Lab Chem Technol, B-9052 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
density functionaltheory; CO2; hydrogenation; Co-based catalysts; surface NH x group; electronicstructure; hydrogen bond; CONVERSION; SUPPORT; METALS; ACTIVATION; ADSORPTION; PROMOTER; RH;
D O I
10.1021/acsami.3c17456
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Catalytic reduction of carbon dioxide into high-value-added products, such as methanol, is an effective approach to mitigate the greenhouse effect, and improving Co-based catalysts is anticipated to yield potential catalysts with high performance and low cost. In this study, based on first-principles calculations, we elucidate the promotion effects of surface *NHx (x = 1, 2, and 3) on the carbon dioxide hydrogenation to methanol from both activity and selectivity perspectives on Co-based catalysts. The presence of *NHx reduced the energy barrier of each elementary step on Co(100) by regulating the electronic structure to alter the binding strength of intermediates or by forming a hydrogen bond between surface oxygen-containing species and *NHx to stabilize transition states. The best promotion effect for different steps corresponds to different *NHx. The energy barrier of the rate-determining step of CO2 hydrogenation to methanol is lowered from 1.55 to 0.88 eV, and the product selectivity shifts from methane to methanol with the assistance of *NHx on the Co(100) surface. A similar phenomenon is observed on the Co(111) surface. The promotion effect of *NHx on Co-based catalysts is superior to that of water, indicating that the introduction of *NHx on a Co-based catalyst is an effective strategy to enhance the catalytic performance of CO2 hydrogenation to methanol.
引用
收藏
页码:8822 / 8831
页数:10
相关论文
共 50 条
  • [21] Theoretical study on the reaction mechanism of CO2 hydrogenation to methanol
    Tao, Xumei
    Wang, Jiaomei
    Li, Zhiwei
    Ye, Qingguo
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2013, 1023 : 59 - 64
  • [22] CO2 Hydrogenation to Methanol on Cu-ZrO2 Catalysts
    Bali, Ferroudja
    Jalowiecki-Duhamel, Louise
    GLOBAL WARMING: ENGINEERING SOLUTIONS, 2010, : 315 - 327
  • [23] Selective Hydrogenation of CO2 to Ethanol over Cobalt Catalysts
    Wang, Lingxiang
    Wang, Liang
    Zhang, Jian
    Liu, Xiaolong
    Wang, Hai
    Zhang, Wei
    Yang, Qi
    Ma, Jingyuan
    Dong, Xue
    Yoo, Seung Jo
    Kim, Jin-Gyu
    Meng, Xiangju
    Xiao, Feng-Shou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) : 6104 - 6108
  • [24] CO2 hydrogenation over cobalt-containing catalysts
    E. V. Suslova
    S. A. Chernyak
    A. V. Egorov
    S. V. Savilov
    V. V. Lunin
    Kinetics and Catalysis, 2015, 56 : 646 - 654
  • [25] CO2 hydrogenation over cobalt-containing catalysts
    Suslova, E. V.
    Chernyak, S. A.
    Egorov, A. V.
    Savilov, S. V.
    Lunin, V. V.
    KINETICS AND CATALYSIS, 2015, 56 (05) : 646 - 654
  • [26] Recent Advances of Indium Oxide-Based Catalysts for CO2 Hydrogenation to Methanol: Experimental and Theoretical
    Cai, Dongren
    Cai, Yanmei
    Tan, Kok Bing
    Zhan, Guowu
    MATERIALS, 2023, 16 (07)
  • [27] Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2
    Liu, XM
    Lu, GQ
    Yan, ZF
    Beltramini, J
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (25) : 6518 - 6530
  • [28] Ionic group-mediated crosslinked polyimide membranes for enhanced CO2 separation
    Kammakakam, Irshad
    Nam, Sang Yong
    Kim, Tae-Hyun
    RSC ADVANCES, 2015, 5 (86): : 69907 - 69914
  • [29] Intermetallic Pd-In catalysts for methanol synthesis by CO2 hydrogenation
    A. V. Rassolov
    G. N. Baeva
    A. R. Kolyadenkov
    P. V. Markov
    A. Yu. Stakheev
    Russian Chemical Bulletin, 2023, 72 : 2583 - 2590
  • [30] Bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol
    Jiang, Xiao
    Koizumi, Naoto
    Guo, Xinwen
    Song, Chunshan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254