This parametric study aims to predict the performance of confluent jets ventilation (CJV) with variable air volume (VAV) from four CJV design parameters. A combination of computational fluid dynamics (CFD), and response surface method (RSM) has been used to predict the energy efficiency, thermal comfort and IAQ for the four expected vital design variables, i.e., heat load (X-H), number of nozzles (X-N), airflow rate (X-Q) and supply temperature (X-TS). The RSM was used to generate a quadratic equation for the response variables exhaust temperature (T-E), supply temperature (T-P), PMV, DR, epsilon(T) and ACE. The RSM shows that the T-E, T-P and PMV were independent of the number of nozzles. The proposed equations were used to generate setpoints optimized for thermal comfort (PMV) for summer, spring and winter cases with different CLO factors and different T-S under a scenario where the heat load varied between 10-30 W/m(2). T-E was used as setpoint to regulate the airflow rate to keep the PMV values close to zero. The results show that by adapting the T-S to the CLO factor both thermal comfort and the energy efficiency can be improved. Further energy reduction can be gained by downregulating the airflow rate to keep the T-P at a fixed setpoint when the heat load is decreased. This means that a CJV can effectively be combined with VAV to improve environmental performance with good thermal comfort (-0.5 < PMV < 0.5, DR < 20%), above average IAQ (ACE approximate to 106%) and with a higher heat removal efficiency (epsilon(T) approximate to 110%) than conventional mixing ventilation. Highlights center dot Parametric study of Confluent jet ventilation with VAV center dot Optimization of set points for VAV scheme with confluent jet ventilation center dot Increased ventilation performance with optimized VAV set points center dot Reduced energy cost with VAV set points optimized for thermal comfort and IAQ