A fractal model for constrained curve and surface interpolation

被引:1
|
作者
Reddy, K. Mahipal [1 ]
Vijender, N. [2 ]
机构
[1] VIT AP Univ, Sch Adv Sci, Amaravati 522020, Andhra Prades, India
[2] Visvesvaraya Natl Inst Technol Nagpur, Dept Math, Nagpur 440010, Maharashtra, India
来源
关键词
D O I
10.1140/epjs/s11734-023-00862-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the literature, a rational cubic spline fractal interpolation function is developed using a rational iterated function system. The parameters (namely, scaling factors and shape parameters) of the rational iterated function system in each subinterval are identified befittingly so that the graph of the resulting rational cubic spline fractal interpolation function lies within a prescribed rectangle. Using a partially blending technique, a rational cubic spline fractal interpolation surface is developed in the literature. The stability analysis of the rational cubic spline fractal interpolation surface is studied with respect to a perturbation in the scaling factors. We investigate the sufficient conditions under which rational cubic spline fractal interpolation surface lies inside a stipulated cuboid. We illustrate our fractal interpolation models with some numerical examples.
引用
收藏
页码:1015 / 1025
页数:11
相关论文
共 50 条
  • [1] A fractal model for constrained curve and surface interpolation
    K. Mahipal Reddy
    N. Vijender
    The European Physical Journal Special Topics, 2023, 232 : 1015 - 1025
  • [2] Constrained and convex interpolation through rational cubic fractal interpolation surface
    N. Balasubramani
    M. Guru Prem Prasad
    S. Natesan
    Computational and Applied Mathematics, 2018, 37 : 6308 - 6331
  • [3] Constrained and convex interpolation through rational cubic fractal interpolation surface
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6308 - 6331
  • [4] Fractal interpolation on the Koch Curve
    Paramanathan, P.
    Uthayakumar, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (10) : 3229 - 3233
  • [5] CURVE INTERPOLATION WITH CONSTRAINED LENGTH
    VANDAMME, R
    WANG, RH
    COMPUTING, 1995, 54 (01) : 69 - 81
  • [6] Bicubic partially blended rational fractal surface for a constrained interpolation problem
    Chand, A. K. B.
    Viswanathan, P.
    Vijender, N.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 785 - 804
  • [7] Bicubic partially blended rational fractal surface for a constrained interpolation problem
    A. K. B. Chand
    P. Viswanathan
    N. Vijender
    Computational and Applied Mathematics, 2018, 37 : 785 - 804
  • [8] α-FRACTAL RATIONAL SPLINES FOR CONSTRAINED INTERPOLATION
    Viswanathan, Puthan Veedu
    Chand, Arya Kumar Bedabrata
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 420 - 442
  • [9] NURBS interpolation curve with constrained length
    Wang, Ren-Hong
    Hu, Jin-Yan
    Journal of Information and Computational Science, 2005, 2 (02): : 327 - 334
  • [10] Approaches for constrained parametric curve interpolation
    CaiMing Zhang
    XingQiang Yang
    JiaYe Wang
    Journal of Computer Science and Technology, 2003, 18 : 592 - 597