INTEGRABLE NONLOCAL NONLINEAR SCHRÖDINGER HIERARCHIES OF TYPE (-?*,?) AND SOLITON SOLUTIONS

被引:41
|
作者
Ma, Wen-xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
matrix eigenvalue problem; integrable hierarchy; nonlocal integrable equation; non-linear Schrodinger equations; Riemann-Hilbert technique; soliton solution; INVERSE SCATTERING; EQUATIONS; DYNAMICS;
D O I
10.1016/S0034-4877(23)00052-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two simultaneous nonlocal group constraints of the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems are discussed, of which one constraint changes the eigenvalue parameter into its negative of the complex conjugate and the other constraint does not change the eigenvalue parameter. Under those two constraints, mixed-type nonlocal integrable nonlinear Schrodinger hierarchies are generated. Further, based on specific distributions of eigenvalues and adjoint eigenvalues, a formulation of soliton solutions is established via the corresponding reflection-less generalized Riemann-Hilbert problems, where eigenvalues and adjoint eigenvalues could be equal.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 50 条