Integration of Physiological, Transcriptomic and Metabolomic Reveals Molecular Mechanism of Paraisaria dubia Response to Zn2+ Stress

被引:6
|
作者
Wang, Yue [1 ]
Tong, Ling-Ling [1 ]
Yuan, Li [1 ]
Liu, Meng-Zhen [1 ]
Du, Yuan-Hang [1 ]
Yang, Lin-Hui [1 ]
Ren, Bo [1 ]
Guo, Dong-Sheng [1 ]
机构
[1] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing 210023, Peoples R China
关键词
Paraisaria dubia; Zn2+ stress response; transcriptomic; metabolomic; metal ion transport; microcycle conidiation; MICROCYCLE CONIDIATION; OXIDATIVE STRESS; CORDYCEPS; ZINC; TOLERANCE; POLYSACCHARIDE; TOXICITY; COPPER; DAMAGE; CELLS;
D O I
10.3390/jof9070693
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Utilizing mycoremediation is an important direction for managing heavy metal pollution. Zn2+ pollution has gradually become apparent, but there are few reports about its pollution remediation. Here, the Zn2+ remediation potential of Paraisaria dubia, an anamorph of the entomopathogenic fungus Ophiocordyceps gracilis, was explored. There was 60% Zn2+ removed by Paraisaria dubia mycelia from a Zn2+-contaminated medium. To reveal the Zn2+ tolerance mechanism of Paraisaria dubia, transcriptomic and metabolomic were executed. Results showed that Zn2+ caused a series of stress responses, such as energy metabolism inhibition, oxidative stress, antioxidant defense system disruption, autophagy obstruction, and DNA damage. Moreover, metabolomic analyses showed that the biosynthesis of some metabolites was affected against Zn2+ stress. In order to improve the tolerance to Zn2+ stress, the metabolic mechanism of metal ion transport, extracellular polysaccharides (EPS) synthesis, and microcycle conidiation were activated in P. dubia. Remarkably, the formation of microcycle conidiation may be triggered by reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) signaling pathways. This study supplemented the gap of the Zn2+ resistance mechanism of Paraisaria dubia and provided a reference for the application of Paraisaria dubia in the bioremediation of heavy metals pollution.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Physiological, ionomic, transcriptomic and metabolomic analyses reveal molecular mechanisms of root adaption to salt stress in water spinach
    Li, Zhenqin
    Cheng, Long
    Li, Sitong
    Liu, Guangcai
    Liu, Sijia
    Xu, Duo
    Yang, Rongchao
    Feng, Feng
    Wang, Junning
    Zheng, Chao
    BMC GENOMICS, 2025, 26 (01):
  • [32] Comparative metabolomic analysis reveals Ni(II) stress response mechanism of Comamonas testosteroni ZG2
    Wang, Chunli
    Sun, Xiaotong
    Chen, Yuanhui
    Zhang, Yu
    Li, Mingtang
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 263
  • [33] Physiological, transcriptomic, and metabolomic analyses of the chilling stress response in two melon (Cucumis melo L.) genotypes
    Diao, Qiannan
    Tian, Shoubo
    Cao, Yanyan
    Yao, Dongwei
    Fan, Hongwei
    Jiang, Xuejun
    Zhang, Wenxian
    Zhang, Yongping
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [34] Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery
    Zhang, Xi-Min
    Duan, Sheng-Guang
    Xia, Ying
    Li, Jie-Ting
    Liu, Lun-Xian
    Tang, Ming
    Tang, Jing
    Sun, Wei
    Yi, Yin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)
  • [35] Physiological and transcriptome analysis reveals the mechanism of Gymnocarpos przewalskii response to drought stress
    Du, Chao
    Ni, Xinyu
    Yan, Mengjiao
    Meng, Qinghan
    He, Junying
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [36] Integrative Transcriptomic and Metabolomic Analysis Reveals the Molecular Mechanism of Red Maple (Acer rubrum L.) Leaf Coloring
    Luo, Yuanyuan
    Deng, Min
    Zhang, Xia
    Zhang, Damao
    Cai, Wenqi
    Long, Yuelin
    Xiong, Xingyao
    Li, Yanlin
    METABOLITES, 2023, 13 (04)
  • [37] Transcriptomic Analysis of the Molecular Response Mechanism of Microcystis aeruginosa to Iron Limitation Stress
    Chen, Xiaxia
    Wang, Jie
    Du, Zunqing
    Shu, Qihang
    Zheng, Zheng
    Luo, Xingzhang
    WATER, 2022, 14 (11)
  • [38] Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39
    Storjohann, Laura
    Holst, Birgitte
    Schwartz, Thue W.
    FEBS LETTERS, 2008, 582 (17) : 2583 - 2588
  • [39] Molecular mechanism of Zn2+ inhibition of a voltage-gated proton channel
    Qiu, Feng
    Chamberlin, Adam
    Watkins, Briana M.
    Ionescu, Alina
    Perez, Marta Elena
    Barro-Soria, Rene
    Gonzalez, Carlos
    Noskov, Sergei Y.
    Larsson, H. Peter
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (40) : E5962 - E5971
  • [40] An integrated physiological indicator and transcriptomic analysis reveals the response of soybean buds to high-temperature stress
    Li, Jiajia
    Wu, Meiyan
    Chen, Haoran
    Liao, Wei
    Yao, Shu
    Wei, Ying
    Wang, Heng
    Long, Qun
    Hu, Xiaoyu
    Wang, Wei
    Wang, Guoji
    Qiu, Lijuan
    Wang, Xiaobo
    BMC PLANT BIOLOGY, 2024, 24 (01):