Artificial Intelligence in Predicting Mechanical Properties of Composite Materials

被引:42
|
作者
Kibrete, Fasikaw [1 ,2 ,3 ]
Trzepiecinski, Tomasz [4 ]
Gebremedhen, Hailu Shimels [2 ,3 ]
Woldemichael, Dereje Engida [2 ,3 ]
机构
[1] Univ Gondar, Dept Mech Engn, POB 196, Gondar, Ethiopia
[2] Addis Ababa Sci & Technol Univ, Artificial Intelligence & Robot Ctr Excellence, POB 16417, Addis Ababa, Ethiopia
[3] Addis Ababa Sci & Technol Univ, Coll Engn, Dept Mech Engn, POB 16417, Addis Ababa, Ethiopia
[4] Rzeszow Univ Technol, Dept Mfg Proc & Prod Engn, Al Powst Warszawy 8, PL-35959 Rzeszow, Poland
来源
JOURNAL OF COMPOSITES SCIENCE | 2023年 / 7卷 / 09期
关键词
artificial intelligence; composite materials; deep learning; machine learning; mechanical properties; CONVOLUTIONAL NEURAL-NETWORKS; TRANSFER LEARNING APPROACH; HETEROGENEOUS MATERIALS; MICROSTRUCTURE GENERATION; STRENGTH PREDICTION; TENSILE-STRENGTH; INVERSE PROBLEM; FUZZY DATA; DESIGN; FRAMEWORK;
D O I
10.3390/jcs7090364
中图分类号
TB33 [复合材料];
学科分类号
摘要
The determination of mechanical properties plays a crucial role in utilizing composite materials across multiple engineering disciplines. Recently, there has been substantial interest in employing artificial intelligence, particularly machine learning and deep learning, to accurately predict the mechanical properties of composite materials. This comprehensive review paper examines the applications of artificial intelligence in forecasting the mechanical properties of different types of composites. The review begins with an overview of artificial intelligence and then outlines the process of predicting material properties. The primary focus of this review lies in exploring various machine learning and deep learning techniques employed in predicting the mechanical properties of composites. Furthermore, the review highlights the theoretical foundations, strengths, and weaknesses of each method used for predicting different mechanical properties of composites. Finally, based on the findings, the review discusses key challenges and suggests future research directions in the field of material properties prediction, offering valuable insights for further exploration. This review is intended to serve as a significant reference for researchers engaging in future studies within this domain.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Mechanical properties of composite core materials.
    Eldiwany, M
    Trajtenberg, CP
    Powers, JM
    JOURNAL OF DENTAL RESEARCH, 2000, 79 : 546 - 546
  • [32] Mechanical properties of new composite restorative materials
    Manhart, J
    Kunzelmann, KH
    Chen, HY
    Hickel, R
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2000, 53 (04): : 353 - 361
  • [33] Mechanical properties of posterior composite materials.
    Bird, SE
    Thompson, JY
    Bayne, SC
    Rapp, MM
    Stamatiades, PJ
    Berg, JH
    JOURNAL OF DENTAL RESEARCH, 1998, 77 : 203 - 203
  • [34] A composite model for mechanical properties of nanocrystalline materials
    Kim, HS
    SCRIPTA MATERIALIA, 1998, 39 (08) : 1057 - 1061
  • [35] Mechanical properties of microfilled composite restorative materials
    Flessa, HP
    Manhart, J
    Ilie, N
    Chen, NY
    Kunzelmann, KH
    Hickel, R
    JOURNAL OF DENTAL RESEARCH, 2002, 81 : B274 - B274
  • [36] Temperature effect on the mechanical properties of composite materials
    Nikolaev, V. P.
    Myshenkova, E. V.
    Pichugin, V. S.
    Sinitsyn, E. N.
    Khoroshev, A. N.
    INORGANIC MATERIALS, 2014, 50 (15) : 1511 - 1513
  • [37] Temperature effect on the mechanical properties of composite materials
    V. P. Nikolaev
    E. V. Myshenkova
    V. S. Pichugin
    E. N. Sinitsyn
    A. N. Khoroshev
    Inorganic Materials, 2014, 50 : 1511 - 1513
  • [38] MODELING OF MECHANICAL PROPERTIES OF COMPOSITE MATERIALS UNDER MECHANICAL VIBRATIONS
    Petru, Michal
    Novak, Ondrej
    PROCEEDINGS OF 58TH INTERNATIONAL CONFERENCE OF MACHINE DESIGN DEPARTMENTS (ICMD 2017), 2017, : 294 - 299
  • [39] Artificial Intelligence Modeling of Materials' Bulk Chemical and Physical Properties
    Darsey, Jerry A.
    CRYSTALS, 2024, 14 (10)
  • [40] Application of artificial intelligence methods for prediction of steel mechanical properties
    Jancikova, Z.
    Roubicek, V.
    Juchelkova, D.
    METALURGIJA, 2008, 47 (04): : 339 - 342