IMPROVING SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK

被引:0
|
作者
Hosseinpour, H. R. [1 ]
Samadzadegan, F. [1 ]
Javan, F. Dadrass [1 ,2 ]
Motayyeb, S. [1 ]
机构
[1] Univ Tehran, Sch Surveying & Geospatial Informat Engn, Coll Engn, Tehran, Iran
[2] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7522 NB Enschede, Netherlands
关键词
Semantic Segmentation; Deep Learning; Wasserstein GAN; Generative Adversarial Network;
D O I
10.5194/isprs-archives-XLVIII-4-W2-2022-45-2023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation of remote sensing images with high spatial resolution has many applications in a wide range of problems in this field. In recent years, the use of advanced techniques based on fully convolutional neural networks have achieved high and impressive accuracies. However, the labels of different classes are estimated independently in this method. In general, the segmentation effect is too coarse to take the relationship between pixels into account. On the other hand, due to the use of convolution filters and limitations of calculations, the field of view information of these filters will be limited in deep layers. In this study, a method based on generative adversarial network (GAN) is proposed to strengthen spatial vicinity in the output segmentation map. The segmentation model receive assistance from the GAN model in the form of a higher order potential loss. Furthermore, for better stability and performance in model training the Wasserstein GAN is used for optimization of the model. We successfully show an increase in semantic segmentation accuracy using the challenging ISPRS Vaihingen benchmark dataset.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [1] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [2] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    [J]. REMOTE SENSING, 2023, 15 (09)
  • [3] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [5] Conditional Generative Adversarial Network-Based Training Sample Set Improvement Model for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Pan, Xin
    Zhao, Jian
    Xu, Jun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7854 - 7870
  • [6] Semantic Segmentation of High-Resolution Remote Sensing Images Using Multiscale Skip Connection Network
    Ma, Bifang
    Chang, Chih-Yung
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (04) : 3745 - 3755
  • [7] Fully convolutional DenseNet with adversarial training for semantic segmentation of high-resolution remote sensing images
    Guo, Xuejun
    Chen, Zehua
    Wang, Chengyi
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (01)
  • [8] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [9] A Semantic Segmentation Approach Based on DeepLab Network in High-Resolution Remote Sensing Images
    Hu, Hangtao
    Cai, Shuo
    Wang, Wei
    Zhang, Peng
    Li, Zhiyong
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 292 - 304
  • [10] Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Tao, Jinhua
    Chen, Liangfu
    Niu, Xuerui
    Zhang, Yumeng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62