Multiple high-energy solutions for an elliptic system with critical Hardy-Sobolev nonlinearity
被引:0
|
作者:
Ri, Maoji
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Math & Stat, Kunming, Peoples R ChinaYunnan Univ, Sch Math & Stat, Kunming, Peoples R China
Ri, Maoji
[1
]
Li, Yongkun
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Math & Stat, Kunming, Peoples R China
Yunnan Univ, Sch Math & Stat, Kunming 650500, Yunnan, Peoples R ChinaYunnan Univ, Sch Math & Stat, Kunming, Peoples R China
Li, Yongkun
[1
,2
]
机构:
[1] Yunnan Univ, Sch Math & Stat, Kunming, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650500, Yunnan, Peoples R China
critical Hardy-Sobolev term;
elliptic system;
lack of compactness;
variational and topological methods;
POSITIVE SOLUTION;
EXISTENCE;
EQUATIONS;
D O I:
10.1002/mma.9997
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper discusses the existence of multiple high-energy solutions for a p$$ p $$-Laplacian system involving critical Hardy-Sobolev nonlinearity in Double-struck capital RN$$ {\mathrm{\mathbb{R}}} circumflex N $$. Considering that the "double" lack of compactness in the system is caused by the unboundedness of Double-struck capital RN$$ {\mathrm{\mathbb{R}}} circumflex N $$ and the presence of the critical Hardy-Sobolev exponent, we demonstrate the version to Double-struck capital RN$$ {\mathrm{\mathbb{R}}} circumflex N $$ of Struwe's classical global compactness result for double p$$ p $$-Laplace operator. In virtue of the quantitative deformation lemma, a barycenter function, and the Brouwer degree theory, the existence of multiple high-energy solutions is established. The results of this paper extend and complement the recent work.
机构:
Univ British Columbia, Pacific Inst Math Sci, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Pacific Inst Math Sci, Vancouver, BC V6T 1Z2, Canada
Ghoussoub, N
Kang, XS
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Pacific Inst Math Sci, Vancouver, BC V6T 1Z2, Canada
Kang, XS
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE,
2004,
21
(06):
: 767
-
793
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Chen, Guanwei
Ma, Shiwang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Du, Qi-Wu
Tang, Chun-Lei
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Chengdu Jiaxiang Foreign Languages Sch, Chengdu 611730, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
机构:
South Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Peoples R ChinaSouth Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Peoples R China
Kang, Dongsheng
Kang, Yangguang
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan 430074, Peoples R ChinaSouth Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Peoples R China
机构:
Osaka City Univ, Grad Sch Sci, Dept Math, 3-3-138 Sugimoto Sumiyoshi Ku, Osaka, Osaka 5588585, JapanOsaka City Univ, Grad Sch Sci, Dept Math, 3-3-138 Sugimoto Sumiyoshi Ku, Osaka, Osaka 5588585, Japan
机构:
Liaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaLiaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China