A review of the strategies used to produce different networks in cellulose-based hydrogels

被引:12
|
作者
Estevam, Bianca Ramos [1 ]
Perez, Isadora Dias [1 ]
Moraes, Angela Maria [2 ]
Fregolente, Leonardo Vasconcelos [1 ]
机构
[1] Univ Campinas UNICAMP, Dept Proc & Prod Design, Sch Chem Engn, BR-13083852 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Bioproc Sch Chem Engn, Dept Engn Mat, BR-13083852 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Double crosslinking; Interpenetrating polymeric network; Double-network; Grafting; Composite hydrogels; CARBOXYMETHYL CELLULOSE; CROSS-LINKING; HYDROXYETHYL CELLULOSE; HIGH-STRENGTH; POLYMERIZATION; NANOCRYSTALS; FABRICATION; COMPOSITES; ADSORPTION; TOUGHNESS;
D O I
10.1016/j.mtchem.2023.101803
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymeric hydrogels are crosslinked networks that form three-dimensional materials, offering unique tailored properties and diverse applications. Cellulose is a natural biopolymer abundant in hydroxyl groups, which holds great potential for hydrogel synthesis via chemical and physical crosslinking. Cellulose-based hydrogels possess potential advantageous characteristics, which enable their use in several fields, such as environmental, medical, agriculture, and most recently in energy fields. Nevertheless, challenges related to mechanical properties and degradation of these polymers persist. To address these limitations, the incorporation of multiple networks in cellulose hydrogels has been explored, combining the desirable features of each type of network to enhance overall performance. Hydrogels can be classified into various types of networks, including single crosslinking (physical or chemical), double-crosslinked hydrogels, grafted hydrogels, semi-interpenetrating polymeric networks (semi-IPN), and interpenetrating polymeric networks (IPN). Exploring the different network types that a hydrogel can form is a way to improve its characteristics regarding mechanical properties, temperature stability, morphological structure, stimuli-responsive behavior, and swelling and release kinetics of active compounds incorporated in it. The intricate nature of interactions within cellulose hydrogels poses a challenge to grasping the nuanced differences in strategies employed to create each unique network. Therefore, this manuscript elucidates the differences between the main types of networks that can be created in cellulose hydrogels, their synthesis methods, benefits, and limitations, serving as a valuable resource to guide future research about cellulose-based hydrogels.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A "click-chemistry" approach to cellulose-based hydrogels
    Koschella, Andreas
    Hartlieb, Matthias
    Heinze, Thomas
    CARBOHYDRATE POLYMERS, 2011, 86 (01) : 154 - 161
  • [42] Preparation of cellulose-based conductive hydrogels with ionic liquid
    Liang, Xiangtao
    Qu, Bing
    Li, Junrong
    Xiao, Huining
    He, Beihai
    Qian, Liying
    REACTIVE & FUNCTIONAL POLYMERS, 2015, 86 : 1 - 6
  • [43] Cellulose-based electrospun nanofibers: a review
    Jonas Kerwald
    Celso Fidelis de Moura Junior
    Emanuelle Dantas Freitas
    João de Deus Pereira de Moraes Segundo
    Rodrigo Silveira Vieira
    Marisa Masumi Beppu
    Cellulose, 2022, 29 : 25 - 54
  • [44] Cellulose-based electrospun nanofibers: a review
    Kerwald, Jonas
    de Moura Junior, Celso Fidelis
    Freitas, Emanuelle Dantas
    Pereira de Moraes Segundo, Joao de Deus
    Vieira, Rodrigo Silveira
    Beppu, Marisa Masumi
    CELLULOSE, 2022, 29 (01) : 25 - 54
  • [45] Preparation of cellulose-based hydrogel: a review
    Zainal, Sarah Husnaini
    Mohd, Nurul Hanisah
    Suhaili, Nabilah
    Anuar, Farah Hannan
    Lazim, Azwan Mat
    Othaman, Rizafizah
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 10 : 935 - 952
  • [46] Review on cellulose-based membrane materials
    Gao C.-T.
    Cai L.
    Dong F.-P.
    Xie H.-B.
    Qin S.-H.
    Zheng Q.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (05): : 1037 - 1047
  • [47] Superabsorbent cellulose-based hydrogels cross-liked with borax
    Tanpichai, Supachok
    Phoothong, Farin
    Boonmahitthisud, Anyaporn
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems
    Ciolacu, Diana Elena
    Nicu, Raluca
    Ciolacu, Florin
    MATERIALS, 2020, 13 (22) : 1 - 37
  • [49] Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels
    Chen, Yong Mei
    Sun, Lei
    Yang, Shao An
    Shi, Lei
    Zheng, Wen Jiang
    Wei, Zhao
    Hu, Chen
    EUROPEAN POLYMER JOURNAL, 2017, 94 : 501 - 510
  • [50] Dynamics in Cellulose-Based Hydrogels with Reversible Cross-Links
    Shao, Changyou
    Yang, Jun
    SELF-HEALING AND SELF-RECOVERING HYDROGELS, 2020, 285 : 319 - 354