Graph Contrastive Partial Multi-View Clustering

被引:13
|
作者
Wang, Yiming [1 ,2 ]
Chang, Dongxia [1 ,2 ]
Fu, Zhiqiang [1 ,2 ]
Wen, Jie [3 ]
Zhao, Yao [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
[3] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel; Clustering methods; Generative adversarial networks; Task analysis; Semantics; Representation learning; Media; Contrastive learning; multi-view learning; partial multi-view clustering;
D O I
10.1109/TMM.2022.3210376
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the diversity of information acquisition, data is stored and transmitted in an increasing number of modalities. Nevertheless, it is not unusual for parts of the data to be lost in some views due to unavoidable acquisition, transmission or storage errors. In this paper, we propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering. Notably, we suppose that the representations of similar samples (i.e., belonging to the same cluster) should be similar. This is distinct from the general unsupervised contrastive learning that assumes an image and its augmentations share a similar representation. Specifically, relation graphs are constructed using the nearest neighbors to identify existing similar samples, then the constructed inter-instance relation graphs are transferred to the missing views to build graphs on the corresponding missing data. Subsequently, two main components, within-view graph contrastive learning and cross-view graph consistency learning, are devised to maximize the mutual information of different views within a cluster. The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering. Experiments on several challenging datasets demonstrate the superiority of our proposed methods.
引用
下载
收藏
页码:6551 / 6562
页数:12
相关论文
共 50 条
  • [11] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144
  • [12] Dual contrastive learning for multi-view clustering
    Bao, Yichen
    Zhao, Wenhui
    Zhao, Qin
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 599
  • [13] Metric Multi-View Graph Clustering
    Tan, Yuze
    Liu, Yixi
    Wu, Hongjie
    Lv, Jiancheng
    Huang, Shudong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9962 - 9970
  • [14] Multi-View Comprehensive Graph Clustering
    Mei, Yanying
    Ren, Zhenwen
    Wu, Bin
    Yang, Tao
    Shao, Yanhua
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3279 - 3288
  • [15] Multi-View Attributed Graph Clustering
    Lin, Zhiping
    Kang, Zhao
    Zhang, Lizong
    Tian, Ling
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1872 - 1880
  • [16] Adaptive partial graph learning and fusion for incomplete multi-view clustering
    Zheng, Xiao
    Liu, Xinwang
    Chen, Jiajia
    Zhu, En
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (01) : 991 - 1009
  • [17] Joint learning of data recovering and graph contrastive denoising for incomplete multi-view clustering
    Wang, Haiyue
    Wang, Quan
    Miao, Qiguang
    Ma, Xiaoke
    INFORMATION FUSION, 2024, 104
  • [18] Partial multi-view spectral clustering
    Cai, Yang
    Jiao, Yuanyuan
    Zhuge, Wenzhang
    Tao, Hong
    Hou, Chenping
    NEUROCOMPUTING, 2018, 311 : 316 - 324
  • [19] Partial Multi-view Subspace Clustering
    Xu, Nan
    Guo, Yanqing
    Zheng, Xin
    Wang, Qianyu
    Luo, Xiangyang
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1794 - 1801
  • [20] Deep contrastive coordinated multi-view consistency clustering
    Fuhao Shi
    Shaohua Wan
    Shengli Wu
    Hui Wei
    Hu Lu
    Machine Learning, 2025, 114 (3)